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Nagai, Toshiki (Ph.D., Aerospace Engineering Sciences)

Space-Time Extended Finite Element Method

with Applications to Fluid-Structure Interaction Problems

Thesis directed by Prof. Kurt Maute

This thesis presents a space-time extended finite element method (space-time XFEM)

based on the Heaviside enrichment for transient problems with moving interfaces, and its

applications to the fluid-structure interaction (FSI) analysis. The Heaviside-enriched XFEM

is a promising method to discretize partial differential equations with discontinuities in space.

However, significant approximation errors are introduced by time stepping schemes when the

interface geometry changes in time. The proposed space-time XFEM applies the finite el-

ement discretization and the Heaviside enrichment in both space and time with elements

forming a space-time slab. A simple space-time scheme is introduced to integrate the weak

form of the governing equations. This scheme considers spatial intersection configuration at

multiple temporal integration points. Standard spatial integration techniques can be applied

for each spatial configuration. Nitsche’s method and the face-oriented ghost-penalty method

are extended to the proposed space-time XFEM formulation. The stability, accuracy and

flexibility of the space-time XFEM for various interface conditions including moving inter-

faces are demonstrated with structural and fluid problems. Moreover, the space-time XFEM

enables analyzing complex FSI problems using moving interfaces, such as FSI with contact.

Two FSI methods using moving interfaces (full-Eulerian FSI and Lagrangian-immersed FSI)

are studied. The Lagrangian-immersed FSI method is a mixed formulation of Lagrangian

and Eulerian descriptions. As solid and fluid meshes are independently defined, the FSI

is computed between non-matching interfaces based on Nitsche’s method and projection

techniques adopted from computational contact mechanics. The stabilized Lagrange mul-

tiplier method is used for contact. Numerical examples of FSI and FSI-contact problems

provide insight into the characteristics of the combination of the space-time XFEM and
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the Lagrangian-immersed FSI method. The proposed combination is a promising method

which has the versatility for various multi-physics simulations and the applicability such as

optimization.
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Chapter 1

Introduction

1.1 Motivation and Research Overview

Partial differential equations (PDEs) are fundamentals of continuous physical phenomenon

and important mathematical background for engineering. Focusing on numerical simulation

methods of a partial differential equation, finite deference method (FDM) [1, 2, 3, 4, 5, 6],

finite element method (FEM) [7, 8, 9, 10, 11, 12, 13, 14, 15], finite volume method (FVM)

[16, 17, 18, 19, 20, 21] and isogeometric analysis (IGA) [22, 23, 24, 25, 26] are representative

methods. While there are hundreds of numerical simulation methods for a partial differential

equation, the FEM is a widely used method in both academia and industry because of its

mathematical background such as functional analysis, well-developed numerical techniques

and its versatility for various types of application.

The FEM is based on the weak form of the PDE and discretizes an integration domain

into finite-size small domains called as finite elements. The state variables are approximated

by shape functions of the FEM. Interfaces in an integration domain are explicitly represented

by edges of finite elements. As the quality of meshing affects results of numerical integration,

various meshing techniques have been developed and the meshing part is one of the com-

putationally most demanding parts in the finite element analysis. In particular, the FEM

with moving interfaces requires continuously updating the interface and thus, remeshing is

essential to track the motion of moving interfaces.

To overcome the high computational cost of meshing, immersed boundary analysis meth-

ods are alternative approaches for modeling geometry. Explicit representation of an interface

such as edges of finite elements is not needed and interfaces are immersed within a compu-
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tational domain implicitly. A combination of the finite element method and an immersed

boundary modeling approach is the eXtended Finite Element Method (XFEM). The XFEM

is an immersed boundary method that can handle discontinuity of state variables within

one element by introducing enrichment functions, in addition to the standard finite element

shape functions. To integrate the weak form of governing equations, the XFEM decomposes

finite elements based on the intersection configuration defined by the iso-contour of the level

set function ϕ [27, 28]. The kink enrichment strategy is typically used for problems with

weak discontinuities (C1 discontinuities). The Heaviside enrichment strategy is proposed

for problems with strong discontinuities (C0 discontinuities) and thus, it is applicable to

a broader class of problems in comparison to kink enrichments. Hansbo and Hansbo [29]

proposed one attractive XFEM formulation using the Heaviside enrichment. The spatial

discretization for a two-phase problem is as follows in this case:

u(x) =
M∑

m=1

(
H
(
−ϕ(x)

) Ne∑
i=1

Ni(x)δ
A,i
mqu

A,m
i +H

(
ϕ(x)

) Ne∑
i=1

Ni(x)δ
B,i
mru

B,m
i

)
, (1.1)

where M is the number of enrichment levels, Ne is the number of nodes in the element,

Ni(X) are the shape functions, up,m
i is a set of state variables of enrichment level m at node

i interpolating in phase p. The Heaviside function turns on/off two sets of shape functions

associated with two phases A and B. For each phase, multiple enrichment levels, i.e. sets

of shape functions, might be necessary to interpolate each state variable. The Kronecker

delta δp,imq selects the active enrichment level q for node i such that state variables at a spatial

point x are interpolated by only one set of state variables defined at node i, satisfying the

partition of unity principle. Benefits of (1.1) are that state variables are approximated by

superposing solutions at both phase computed by the finite element method (FEM) and that

non-intersected elements can be computed by the standard fashion of the FEM. Therefore,

(1.1) has convenient structure for the actual implementation. The reader is also referred to

Fries and Belytschko [30, 31], Khoei [32], Mohammadi [33], Makhija and Maute [34], Terada
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et al. [35] and Tran et al. [36] as an introduction and general outline of the XFEM.

A drawback of the Heaviside-enriched XFEM (1.1) is the complexity of accurately pre-

dicting the response of transient problems with moving interfaces. Figure 1.1 illustrates a

transient two-phase problem with a moving interface, considering four elements around an

interface at previous time tn−1 (left) and current time tn (right). The shaded region is phase

A and the non-shaded region is phase B.

Figure 1.1: Problem of Heaviside-enriched XFEM using time stepping scheme

Focusing on the green element (top right element), this element is not intersected at

t = tn−1 and intersected at t = tn as an interface moves. The spatial point x2 belongs to

phase B at both time and thus, the approximation of time derivative terms can be evaluated

by time stepping schemes; e.g. ∂un/∂t ∼ (un −un−1)/∆t. On the other hand, the phase at

a spatial point x1 changes from A to B as follows:

un−1(x1) =
∑
i=1

Ni(x1)u
B
i at tn−1 , (1.2)

un(x1) =
∑
i=1

Ni(x1)u
A
i at tn . (1.3)

In this case, a subtraction; un(x1) − un−1(x1), is meaningless because of the phase change

at tn−1 and tn and thus, time stepping schemes fail to approximate time derivative terms.

To mitigate this error, the ghost fluid method [37, 38, 39, 40] have been introduced.

In order to avoid time integration errors due to moving interfaces, the space-time XFEM

has been proposed as a combination of the XFEM and the space-time formulation [41, 42, 43,
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44]. Chessa and Belytschko [45, 46] presented a space-time XFEM based on the Heaviside

enrichment for spatially one-dimensional equations. Lehrenfeld [47] proposed a space-time

XFEM approach and demonstrated its capability using a spatially three-dimensional con-

vection diffusion equation with a moving interface. The work of [47] is restricted to linear

problems because the convective velocity is analytically defined. The decomposition of a

space-time domain is necessary in the space-time XFEM to generate space-time intersection

configuration for numerical integration. [47] uses a four-dimensional simplex triangulation

like Behr [48] and Neumüller et al. [49]. This approach is rather complex and leads to

an involved implementation. Zahedi [50] also presented a space-time XFEM for spatially

two-dimensional convection-diffusion equations using analytical convection velocity. [50] in-

troduced a simple space-time integration strategy that relies on the summation of spatial

integration at multiple temporal quadrature points in a space-time slab. However, this sim-

ple space-time integration leads to errors when a small intersected volume is created, because

temporal quadrature points are independently defined without considering the location of

space-time interfaces. This issue will be discussed in more detail later.

The XFEM suffers from ill-conditioning because of small intersected volume generated

by immersed boundaries. Such configurations are frequently created by moving interfaces.

The ill-conditioning causes slow convergence of linear solvers and may lead to the divergence

of nonlinear solvers. To mitigate this ill-conditioning problem, several methods have been

proposed such as preconditioning schemes [51, 52, 53, 54] and the face-oriented ghost-penalty

method (Burman and Hansbo [55, 56]). The face-oriented ghost-penalty method penalizes

the jump of numerical flux across two adjacent intersected elements and thus, controls the

spatial gradients of the state variables in the vicinity of interfaces. Zahedi [50] expanded this

method for the space-time XFEM and succeeded to mitigate the ill-conditioning for spatially

two-dimensional convection-diffusion equations.

The realization of a stable and robust computational method for moving interfaces such
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as the space-time XFEM, enhances significantly the flexibility of numerical computations for

complex systems. Fluid-structure interaction (FSI) represents one class of problems which

can benefit from the correct mathematical treatment of moving interfaces. FSI describes the

interaction between the fluid forces that act on a structure and the change in geometry of

the fluid-solid interface as a result of structural deformations. FSI is widely found in physics

and various engineering applications. FSI needs to be considered in the design of industrial

products such as tires, airbags, aircraft, trains, vehicles and so on. In addition, FSI plays an

important role in bio-mechanics and the design of bio-mechanical devices.

A class of problems of particular interest is FSI with solid bodies undergoing mechanical

contact. Tires on a wet road and inflation of an airbag are typical examples of FSI-contact

problems. Similar problems are encountered in the design of bio-medical in-vivo robotic

devices (Figure 1.3), which has tires made by the tread of the rubber-like material and

moves on the intestinal wall with these tires to inspect the condition of organ tissues.

Figure 1.2: Contact on wet surface

Computational methods of the fluid-structure interaction (FSI) problems have been

widely proposed. The most popular method is the Arbitrary Lagrangian and Eulerian (ALE)

method (Belytschko et al. [58], Huerta et al. [59, 60], Nitikitpaiboon and Bathe [61, 62],

Bathe et al. [63]). In the ALE-FSI method, the solid phase is defined by body-fitted meshes

based on the Lagrangian description. The fluid phase is also represented by body-fitted

meshes that deform in response to the structural deformations. The main advantage of
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Figure 1.3: In-vivo Micro Device [57]

the ALE-FSI is that the interface between solid and fluid phase is defined explicitly be-

cause both phases are represented by the body-fitted mesh. However, the computation is

not very robust, especially when body-fitted fluid mesh undergoes large deformations and

fluid elements are severely distorted. Moreover, considering contact phenomena within the

FSI system, the fluid phase within the contact region should be vanished. The topology of

body-fitted meshes of the fluid is not preserved in this case. The flexibility of the ALE-FSI

method is insufficient for problems which contains large deformation and contact like tires.

To overcome difficulties of the ALE-FSI, several non-standard FSI methods have been

proposed. One of non-standard FSI methods to handle FSI-contact problems, is the full-

Eulerian FSI method (Frei, Richter, et al. [64, 65], Richter [66], Kamrin et al. [67, 68]),

which is based on the Eulerian description (spatial description) of both, the solid and fluid

phase. As there is no body-fitted mesh, numerical instability due to the distortion of meshes

does not occur. Therefore, this method is more robust than the ALE method for complex

FSI problems with large deformation and contact. The main challenge of the full-Eulerian

FSI method is the treatment of the solid phase using the Eulerian description. The problem

of previous works of the full-Eulerian FSI method is that these works use the standard FEM

or FVM and thus, very fine meshes are essential to capture reasonable interfaces. This is

because an interface is represented by an immersed boundary modeling within fixed back
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ground meshes, not by body-fitted meshes.

Another non-standard FSI method is the mixed Lagrangian and Eulerian formulation.

Mayer, Wall, et al. [69, 70] proposed the XFEM based fixed grid approach using the ghost-

fluid method to handle FSI and contact simultaneously. In the XFEM based fixed grid

approach, solid and fluid phases are defined by the Lagrangian and Eulerian description

respectively. The benefit of this method is that there is no limitation on the deformation

of the solid because the computation of the fluid phase is always performed on a fixed

background mesh. Conventional contact formulations can be directly applied. However,

the ghost-fluid method is needed to treat moving interfaces in a transient problem because

the XFEM based fixed grid approach uses the XFEM with the time stepping scheme. In

addition, a complex technique for the update of the geometry is necessary.

1.2 Original Works

This thesis contributes to the development of the space-time XFEM and non-standard

FSI method using the XFEM framework. The combination of the space-time XFEM and

non-standard FSI method is a promising method for the stable and robust computation of

the complex FSI system such as FSI-contact problems.

The first contribution of this thesis is a space-time XFEM based on the Heaviside en-

richment for transient problems with moving interfaces. This thesis introduces a simple

space-time integration based on the summation of spatial integration at multiple temporal

quadrature points. Each space-time element is subdivided into multiple temporal layers

along time considering its intersection configuration. Then, temporal integration points are

defined in each temporal layer based on the quadrature rule and called as the temporal

slices. For each temporal slice, one quadrature point is set at its central position in time.

Thus, the elementwise space-time integration is performed by the summation of piece-wise

constant integration in time. While the proposed integration is similar to [50], more precise
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space-time integration is achieved because all small intersection configurations are taken into

account for the setting of temporal quadrature points. As the proposed method only relies

on the triangulation in space, the proposed space-time integration is directly applicable to

spatially three-dimensional problems without simplex triangulation like [47]. This space-time

integration is named as the elementwise temporal layer approach. This thesis studies spa-

tially two-dimensional structural and fluid problems using the proposed space-time XFEM.

While previous studies by [47] and [50] considered linear problems, this thesis focuses on

nonlinear problems. A structural problem assumes the finite strain theory and nonlinear

elastic material as a structural model. At fluid problems, this thesis uses the incompressible

Navier-Stokes fluid and the variational multiscale method (Hughes et al. [71], Schott et

al. [72, 73]) is applied for the stabilization of the convection and incompressibility terms.

Nitsche’s method of Hansbo et al. [74] is used to enforce space-time interface conditions in

both structural and fluid problems. The face-oriented ghost-penalty method is applied for

nonlinear elastic solid and incompressible Navier-Stokes fluid in the space-time XFEM. Nu-

merical examples of structural and fluid problems including both fixed and moving interfaces

are studied by the proposed space-time XFEM. Through these numerical examples, the pro-

posed method, a space-time XFEM based on the elementwise temporal layer approach using

the face-oriented ghost-penalty stabilization, is a stable and robust computational method

for transient problems with moving interfaces.

The second contribution of this thesis is the study of non-standard FSI methods using

the XFEM framework for complex FSI-contact phenomenon. The full-Eulerian FSI method

using the XFEM is studied. In the full-Eulerian FSI method, the interface is driven by the

propagation of the level set function. This level set function is also used for the enrichment

strategy of the XFEM and thus, the XFEM has a high affinity for the full-Eulerian FSI

method. The capability of the full-Eulerian FSI method using the XFEM is studied for the

FSI analysis with large deformation in this thesis.
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The Lagrangian-immersed FSI method using the XFEM is proposed as one of non-

standard FSI methods to capture FSI-contact phenomenon. In this method, both the solid

and fluid phases are defined by the Lagrangian and Eulerian description respectively. While

the treatment of physical description is identical to Mayer, Wall, et al. [69, 70], there are dis-

tinct differences in terms of the update of geometry. In the proposed Lagrangian-immersed

FSI method, solid and fluid are separately defined and solid structures should be immersed

within the fluid mesh. To generate reasonable interfaces in the fluid phase considering the

deformation of the solid phase, the level set projection method is introduced. Immersed

interfaces in the fluid mesh are created by the minimization problem of level set functions

between solid and fluid. The level set projection method is combined with the weak form of

FSI and thus, the update of geometry is performed automatically at the solver part without

any additional technique. The FSI interface integral is computed between non-matching

Lagrangian and Eulerian interfaces based on Nitsche’s method. The fluid-solid coupling is

enforced by formulations and techniques adopted from computational contact mechanics such

as a master-slave concept. Proposed Lagrangian-immersed FSI method achieved simpler im-

plementation than [69, 70]. As the solid phase is defined by the Lagrangian description, the

scheme of conventional contact formulations, e.g. the stabilized Lagrange multiplier method

proposed by [75] is directly applicable. Comparing the Lagrangian-immersed FSI method

to the full-Eulerian FSI method, the Lagrangian-immersed FSI method seems to be more

flexible and scalable than the full-Eulerian FSI method. However, the combination of these

non-standard FSI methods with the XFEM still suffers from numerical time integration

errors due to moving interfaces discussed above.

The combination of the space-time XFEM and the Lagrangian-immersed FSI method is

finally proposed as the third contribution of this thesis. The space-time FSI formulation and

space-time contact formulation based on non-matching space-time interfaces are developed.

Based on the space-time formulation, the effect of moving interfaces in the Lagrangian-
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immersed FSI method is stably computed and a stable and robust FSI-contact analysis

method is achieved. The proposed combination is shown to be a promising computational

method for the robust and flexible FSI-contact problem and also beneficial in terms of the

sensitivity analysis at the optimization scheme and gradient-based design optimization.
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1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 summarizes the theory of the eXtended

Finite Element Method (XFEM) based on the Heaviside enrichment strategy. In Chapter

3, the space-time eXtended Finite Element Method (space-time XFEM) based on the ele-

mentwise temporal layer approach is proposed. The mathematical theory and the numerical

implementation of the proposed space-time XFEM are discussed. In addition, the ease of

the numerical implementation of the proposed space-time XFEM is demonstrated and ap-

plications to both structural and fluid problems including moving interfaces are presented.

The following three chapters study the fluid-structure interaction (FSI) problems using

the standard XFEM and the conventional time integration scheme. Chapter 4 provides

a brief summary of FSI formulations and numerical methods. Chapters 5 and 6 study

non-standard computational methods for FSI problems that involve complex geometrical

nonlinearity such as large deformation and contact. Chapter 5 focuses on the full-Eulerian

FSI method using the XFEM and the conservative level set function (CLSF) method. In

Chapter 6, the Lagrangian-immersed FSI method using the XFEM is discussed. Flexible

steady-state FSI analysis methods are proposed in this chapter. Moreover, the stabilized

Lagrange multiplier method for contact is described and the capability of the Lagrangian-

immersed FSI method for FSI-contact problems is demonstrated. Chapter 7 summarizes

the application of the proposed space-time XFEM to the Lagrangian-immersed FSI method.

The theory and its numerical implementation for FSI and contact based on the space-time

formulation are described. The stability and accuracy of the combination of the space-time

XFEM and the Lagrangian-immersed FSI method are demonstrated using a transient FSI

problem including large deformation, a well-known Turek-Hron FSI benchmark problem and

a multibody FSI-contact problem. Finally, Chapter 8 summarizes the contribution of this

thesis and describes the applicability of this research towards multi-physics analyses and

optimization schemes.
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Chapter 2

Extended Finite Element Method

2.1 Outline

The extended finite element method (XFEM) is an immersed boundary method that can

handle discontinuities of state variables within one element by introducing enrichment func-

tions in addition to finite element shape functions. The kink enrichment strategy is proposed

for the weak discontinuities (C1 discontinuities). The Heaviside enrichment strategy is pro-

posed for problems with strong discontinuities (C0 discontinuities) and thus, it is applicable

to a broader class of problems in comparison to kink enrichments.

This chapter focuses on the Heaviside-enriched XFEM and summarizes its theory by com-

paring the FEM. This chapter references works of Freis [30, 76], Makhija [34], Mohammadi

[33] and Song [77].

2.2 Spatial Discretization based on FEM

Consider the spatial discretization of the state variables u based on the finite element

method (FEM). The discretized form of the state variables is as follows:

u(x) =
Ne∑
i=1

Ni(x)ui , (2.1)

where Ni(X) is the shape function, Ne is the number of node, and ui is a set of state variables

at node i. A solution at an arbitrary point x is interpolated by nodal solution vectors ui

which belong to the element that contains x. A set of shape functions satisfies the partition
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of unity principle at any given location x:

Ne∑
i=1

Ni(x) = 1 . (2.2)

2.3 Spatial Discretization based on XFEM (Belytschko’s Method)

On the other hand, elements of the XFEM have internal interfaces. The discontinuities

of state variables are captured within one finite elements along an interface. To represent

internal implicit interfaces, an enrichment function is introduced. One popular form of the

XFEM is Belytschko’s method, which is usually applied to the crack propagation analysis.

In this case, the spatial discretization based on the XFEM is denoted as follows:

u(x) =
Ne∑
i=1

Ni(x)ui +
Ne∑
i=1

N̂i(x)ψ(x)ai , (2.3)

where N̂i(x) is the enriched basis function, which are usually identical to the standard shape

functions Ni(x) but not necessarily identical to it. ai are an additional nodal unknown and

ψ(x) is the enrichment function. The first term of RHS is the term of the standard finite

element discretization corresponding to (2.1) and the second term of RHS is the term of the

local enrichment approximation. Belytschko’s method represents discontinuities across the

interfaces by the linear combination of regular components of the FEM and additional local

components by the enrichment. But the approximation (2.3) is not correct (u(xi) ̸= ui)

when the essential boundary condition is applied. To recover the Kronecker-δ property of

the standard finite element approximation, (2.3) can be modified as the following shifted

approximation:

u(x) =
Ne∑
i=1

Ni(x)ui +
Ne∑
i=1

N̂i(x)
(
ψ(x)− ψ(xi)

)
ai . (2.4)

(2.4) is the shifted global enrichment of the spatial discretization based on Belytschko’s

method. By choosing N̂i = Ni as the standard shape functions, this approximation sat-
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isfies the partition of unity principle like the FEM. Extending (2.4) to the case of several

enrichment levels, then:

u(x) =
Ne∑
i=1

Ni(x)ui +
M∑

m=1

Ne∑
i=1

N̂i(x)
(
ψm(x)− ψm(xi)

)
am
i , (2.5)

where M is the total number of enrichment levels. There are several enrichment strategies.

In this research, the Heaviside-enriched level-set based XFEM is used. The Heaviside step

function H is used as the enrichment function ψ as follows:

u(x) =
Ne∑
i=1

Ni(x)ui +
Ne∑
i=1

N̂i(x)
(
H(ϕ(x))−H(ϕ(xi))

)
ai , (2.6)

H(x) =


1 (x > 0)

0 (x ≤ 0)

. (2.7)

In (2.6), the function ϕ(x) defines the interface Γ as the iso-contour ϕ(x) = 0. This ϕ(x) is

the level set function in this research.

2.4 Spatial Discretization based on XFEM (Hansbo’s Method)

Hansbo and Hansbo [29] proposed an attractive XFEM formulation based on the Heavi-

side enrichment. This method is also based on the partition of unity and inspired by Babuska

[78, 79]. Considering the spatial discretization of the state variables u by the Heaviside-

enriched level-set based XFEM proposed at [29], the spatial discretization is denoted as

follows:

u(x) =
M∑

m=1

(
H
(
−ϕ(x)

) Ne∑
i=1

Ni(x)δ
A,i
mqu

A,m
i +H

(
ϕ(x)

) Ne∑
i=1

Ni(x)δ
B,i
mru

B,m
i

)
. (2.8)

The number of enrichment levels is denoted byM , Ne is the number of nodes in the element,

Ni(X) are the shape functions, up,m
i is a set of state variables of enrichment level m at node

i interpolating in phase p. The Heaviside function turns on/off two sets of shape functions
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associated with two phases A and B. For each phase, multiple enrichment levels, i.e. sets of

shape functions, might be necessary to interpolate each state variable. The Kronecker delta

δp,imq selects the active enrichment level q for node i such that state variables at a spatial point

x are interpolated by only one set of state variables defined at node i, satisfying the partition

of unity principle. For further description, see Makhija and Maute [34], Terada et al. [35]

and Tran et al. [36]. In non-intersected elements, the solution field is approximated by the

standard finite element interpolation. The enrichment level for these elements is chosen to

maintain continuous state variables across element boundaries.

Benefits of (2.8) are that state variables are approximated by superposing solutions at

both phase computed by the finite element method (FEM) and that non-intersected elements

can be computed by the standard fashion of the FEM. Therefore, the numerical implemen-

tation of Hansbo’s method is much more convenient than Belytschko’s method (2.3). The

equivalence of Hansbo’s method and Belytschko’s method is proven by Song et al. [77].

The benefit of (2.8) is that (2.8) is only considered at the intersected elements cut by the

interfaces and other non-intersected elements can be treated by the standard fashion of the

FEM. This feature is very beneficial for the implementation of the XFEM and thus, this

form is used in this thesis.
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Chapter 3

Space-Time Extended Finite Element Method

3.1 Outline

This chapter presents a space-time XFEM based on the Heaviside enrichment for tran-

sient problems with moving interfaces, using Hansbo’s method (2.8). This thesis introduces

a simple space-time integration based on the summation of spatial integration at multiple

temporal quadrature points. Each space-time element is subdivided into multiple temporal

layers along time by considering its intersection configuration. Then, temporal integration

points are defined in each temporal layer based on the quadrature rule and called as the

temporal slices. While the proposed integration is similar to [50], more precise space-time

integration can be achieved than [50] because all small intersection configurations are taken

into account for the setting of temporal quadrature points. As this thesis only relies on the

triangulation in space, the proposed space-time integration is directly applicable to spatially

three-dimensional problems without the simplex triangulation like [47]. This space-time in-

tegration is named as the elementwise temporal layer approach. This thesis studies spatially

two-dimensional structural and fluid problems using the proposed space-time XFEM. While

the previous studies by [47] and [50] considered linear problems, this thesis focuses on non-

linear problems. The finite strain theory is assumed and a nonlinear elastic material is used

as a solid model. At fluid problems, this thesis uses the incompressible Navier-Stokes fluid

and the variational multiscale method [71, 72, 73] is applied for the stabilization of the con-

vection and incompressibility terms. Nitsche’s method based on Hansbo et al. [74] is used

for space-time interface conditions in both structural and fluid problems. The face-oriented

ghost-penalty method is also applied for nonlinear elastic solid and incompressible Navier-
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Stokes fluid in the space-time XFEM. This chapter demonstrates the efficiency and stability

of the proposed space-time XFEM through practical transient problems with both fixed and

moving interfaces.

The remainder of this chapter is summarized as follows: Section 3.2 is a brief summary

of a general weak form for the XFEM as a conventional method. Section 3.3 denotes the

Heaviside-enriched space-time XFEM in comparison with Section 3.2. It should be noted that

the XFEM means the Heaviside-enriched XFEM at the following discussions. In Section 3.4,

characteristic numerical implementations in terms of space-time integration points and the

face-oriented ghost-penalty stabilization are summarized. Section 3.5 is a numerical example

of spatially two-dimensional transient structural analysis with nonlinear elastic material.

Besides, two numerical examples of spatially two-dimensional transient fluid analysis using

the incompressible Navier-Stokes fluid are demonstrated in Section 3.6. As a fixed interface

problem, a well-known fluid benchmark problem: DFG 2D-3 problem (Schäfer and Turek

[80]) is computed. As a moving interface problem, flow around an in-line oscillating cylinder

is computed.

3.2 Extended Finite Element Method (XFEM)

This section is a brief summary of a general weak form for the XFEM using (2.8). The

reader is referred to Chapter 3 for the outline of the XFEM. The XFEM is based on a

weak form of partial differential equations, which is integrated over entire spatial domain.

Assuming a transient two-phase problem, gpi (u
n, u̇n, tn) is a volume contribution of govern-

ing equations defined in the spatial volume of phase p at time tn: Ωnp, np
i (u

n, u̇n, tn) is a

Neumann boundary condition of phase p at time tn: Γn,p
N , and hi(u

n, u̇n, tn) is a boundary

condition including discontinuities across an interface at time tn: Γn
int:

Governing equations (volume): gpi
(
un, u̇n, tn

)
= 0 in Ωn,p , (3.1)

Neumann boundary conditions: np
i

(
un, u̇n, tn

)
= 0 on Γn,p

N , (3.2)
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Interface conditions: hi
(
un, u̇n, tn

)
= 0 on Γn

int . (3.3)

A general weak form using (3.1) ∼ (3.3) at time tn can be denoted as follows:

∑
p=A,B

∫
Ωn,p

dΩ wp
i g

p
i (u

n, u̇n, tn) +
∑

p=A,B

∫
Γn,p
N

dΓ wp
i n

p
i (u

n, u̇n, tn)

+

∫
Γn
int

dΓ wint
i hi(u

n, u̇n, tn) = 0 . (3.4)

Here, wp
i is an admissible test function of phase p = {A,B} and wint

i is an admissible test

function on the interface between phase A and B.

As the finite element discretization is applied only in the spatial domain, a time derivative

of the state variables u̇ is approximated by the time stepping scheme. In this case, u̇ is a

functional of a set of u, u̇ and ü up to time tn: {u}n, {u̇}n and {ü}n. Major approximations

of u̇n are as follows:

BDF1: u̇n = u̇n[un,un−1] =
1

∆t
(un − un−1) , (3.5)

BDF2: u̇n = u̇n[un,un−1,un−2] =
3

2∆t

(
un − 4

3
un−1 +

1

3
un−2

)
, (3.6)

Newmark: u̇n = u̇n[un,un−1, u̇n−1, ün−1]

=
γ

β∆t
(un − un−1) +

(
1− γ

β

)
u̇n−1 +

(
1− γ

2β

)
∆tün−1 , (3.7)

where ∆t is a time increment, γ and β are parameters for the Newmark method (3.7).

3.3 Space-Time Extended Finite Element Method (Space-time XFEM)

Section 3.2 shows a general weak form for the XFEM and time derivative terms are

approximated by time stepping schemes. Spatial and temporal domains are distinguished

as separated fields and different discretization schemes are used in both domains. However,

there is no distinction between space and time as mathematical coordinate axes. Therefore,

the finite element discretization also can be applied to the temporal domain.

This section summarizes the space-time extended finite element method (space-time
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XFEM) as a combination of the XFEM and the space-time formulation. The space-time

XFEM applies the finite element discretization in both space and time. State variables are

approximated by the finite element method in a space-time domain without the need for a

time stepping scheme. The weak form is integrated over an entire space-time domain. The

space-time volume, which is generally denoted by Q, has one order higher dimension than

the spatial volume Ω. A boundary of Q is denoted as P . Table 3.1 is the summary of the

notation of volume and boundary of a space-time slab.

Table 3.1: Notation of volume and boundary
Spatial Domain Space-Time Slab

Volume Ω, dΩ Q = Ω⊕ T, dQ = dΩdt
Boundary Γ, dΓ P = Γ⊕ T, dP = dΓdt

Figure 3.1: Space-time slab
Figure 3.2: Volume and boundaries in a space-time
slab Qn

In this thesis, the space-time XFEM uses a continuous Galerkin method in space. A

discontinuous Galerkin method [81, 82] is used in time to enhance the convergence by weakly

averaging continuities on temporal boundaries. A key concept of the space-time XFEM is a

space-time slab. A space-time slab is a subdivided portion of an entire space-time domain

along time. Figure 3.1 is an image of subdivision of a space-time domain into space-time



www.manaraa.com

20

slabs. Adjacent space-time slabs are disconnected due to a discontinuous Galerkin method

to weakly enforce continuities between slabs. Figure 3.2 is an image of space-time volume

and boundaries in a space-time slab Qn (middle slab in Figure 3.1). Qn does not contain

time tn and tn+1. Its lower and upper temporal bounds are denoted as tn+ and tn+1
− , which

deviate from tn and tn+1 in an infinitesimal value δ like (3.8):

tn+ ≡ tn + δ, tn+1
− ≡ tn+1 − δ . (3.8)

Boundary P of this slab Qn is denoted as P n. P n+1,p
− and P n,p

+ denote boundaries on the

upper temporal bound tn+1
− and lower temporal bound tn+ related to phase p. P n

int denotes

an interface in a space-time slab Qn. Furthermore, a space-time slab is divided into space-

time elements Qn based on the finite element discretization. In this thesis, the number of

space-time element along time axis is always one.

The space-time XFEM in this thesis applies the Heaviside-enriched XFEM (2.8) to a

generalized coordinate including space and time z = (x, t):

u(z) =
M∑

m=1

(
H
(
−ϕ(z)

) Nst
e∑

i=1

Ni(z)δ
A,i
mqu

A,m
i +H

(
ϕ(z)

) Nst
e∑

i=1

Ni(z)δ
B,i
mru

B,m
i

)
, (3.9)

where N st
e is the number of nodes in a space-time element and different from Ne of a spatial

element described at the previous section. A space-time element has one order higher di-

mension than a spatial element: if a spatial element is a 2D element (e.g. QUAD4, Ne = 4),

a space-time element should be a 3D element (e.g. HEXA8, N st
e = 8). This thesis focuses

on spatially two-dimensional problems and thus, the space-time XFEM uses trilinear shape

functions in a space-time element (spatially bilinear and temporally linear element).

To consider the weak form for the space-time XFEM, assuming gpi (u, u̇, t) is a volume

contribution of governing equations defined in the volume of phase p in a space-time slab:

Qn,p, np
i (u, u̇, t) is a Neumann boundary condition of phase p of a space-time slab: P n,p

N ,

and hi(u, u̇, t) is an interface condition on P n
int including discontinuities across interface
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between two phases using Nitsche’s method. The range of time t in this space-time slab is

t = [tn+, t
n+1
− ]:

Governing equations (volume): gpi
(
u, u̇, t

)
= αp

i u̇
p
i + f p

i (u, t) = 0 in Qn,p, (3.10)

Neumann boundary conditions: np
i

(
u, u̇, t

)
= 0 on P n,p

N , (3.11)

Interface conditions: hi
(
u, u̇, t

)
= 0 on P n

int. (3.12)

For simplicity, this section assumes that gpi is separated into a term related to u̇ and the

rest fp
i which is independent of u̇ like (3.10). αp

i is a coefficient of u̇i in this case. Using

the space-time XFEM, a time derivative u̇ is constructed by the shape function in time

directly because the finite element discretization is also applied in the temporal domain.

Thus, additional approximation techniques for u̇ like (3.5), (3.6) and (3.7) are not necessary

in this case.

As a discontinuous Galerkin method is applied along the time axis, the solution is dis-

continuous between space-time slabs (e.g. between Qn and Qn−1). As a correction of a

discontinuous Galerkin method, the following continuity condition between is added to ob-

tain continuous solution in time:

Continuity between slabs: [[αp
iu

p
i ]]

n
± ≡ αp

i

∣∣n
+
upi
∣∣n
+
− αp

i

∣∣n
−u

p
i

∣∣n
− = 0 on P n,p

+ . (3.13)

upi
∣∣n
+
is a boundary value on P n,p

+ in a current space-time slab Qn. On the other hand, upi
∣∣n
−

is a boundary value on P n,p
− in a previous space-time slab Qn−1.

Considering (3.10) - (3.13), the general weak form of governing equations in a space-time

slab Qn is written as follows:

∑
p=A,B

∫
Qn,p

dQ wp
i g

p
i (u, u̇, t) +

∑
p=A,B

∫
Pn,p
N

dP wp
i n

p
i (u, u̇, t)

+

∫
Pn
int

dP wint
i hi(u, u̇, t) +

∑
p=A,B

∫
Pn,p
+

dΩ wp
i

∣∣n
+
[[αp

iu
p
i ]]

n
± = 0 . (3.14)

Here, wp
i is an admissible test function in phase p = {A,B}, wint

i is an admissible test
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function on the interface of two phases A and B, and wp
i

∣∣n
+
is an admissible test function on

P n,p
+ within a current space-time slab Qn. The forth integral of LHS of (3.14) is an additional

contribution in the space-time XFEM, comparing the weak form of the XFEM (3.4). This

integral is a correction term of a discontinuous Galerkin method from a continuous Galerkin

method. As P n,p
+ is purely a spatial domain, an integral over P n,p

+ is performed only in the

spatial domain Ωn,p. By using (3.14), a transient problem is completely discretized by the

finite element discretization without time stepping schemes.

3.4 Numerical Implementation

The space-time XFEM uses the finite element discretization in space and time. Thus,

integrating numerically over the space-time slab Qn and the boundary terms in (3.14) leads

to different integration points in comparison with the XFEM that uses the finite element

discretization only in space. While the higher-dimensional simplex triangulation is usually

used for defining integration points in a space time slab [48, 49, 47], this section proposes

a simple space-time integration scheme named the elementwise temporal layer approach.

First, space-time elements are subdivided into layers which correspond to different spatial

intersection configurations. These layers are called as temporal layers. Then, temporal

integration points are defined in each temporal layer based on the quadrature rule. Each

temporal layer is cut by planes on these temporal integration points parallel to the spatial

domain. The cross section created by this cut are called as the temporal slices in this thesis.

Each space-time element has different number of temporal slices based on its intersection

configuration. Finally, integration points for a space-time volume are distributed on each

temporal slice using the same numerical integration scheme used in the standard XFEM.

More precise space-time integration can be achieved than [50] by evaluating all intersection

configuration including small volume created by moving interfaces.

This section summarizes the elementwise temporal layer approach and placement of in-
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tegration points for space-time volume and interface in the space-time XFEM. The face-

oriented ghost-penalty method is applied in the space-time XFEM like [50] to mitigate

ill-conditioning problem due to small intersected space-time volume.

3.4.1 Elementwise Temporal Layer Approach

The space-time XFEM needs integration points distributed in an entire space-time slab.

In general, direct decomposition methods like the simplex triangulation are used to determine

the location of these integration points. Another way is the summation of spatial integration

on multiple temporal integration points. Considering a fixed interface problem, the intersec-

tion configuration defined by the level set function ϕ is time-invariant. Integration points for

the space-time XFEM can be defined by the duplication of integration points in the spatial

domain at any time t. On the other hand, considering a moving interface problem, the lo-

cation of space-time interfaces varies in time and thus, the spatial intersection configuration

change in time. Therefore, an intersected space-time element has multiple types of spatial

intersection configuration due to moving interfaces.

This thesis introduces an elementwise temporal layer, which is a temporal section cor-

responding to an individual spatial intersection configuration in an intersected space-time

element. This thesis uses trilinear space-time elements (QUAD4 in space and linear in time).

As the linear shape function is used along time, the level set function ϕ changes linearly in

time. The detection of the change of the spatial intersection configuration is algebraically

and uniquely defined by checking values of nodal level set functions. In each temporal layer,

multiple temporal integration points are defined by a quadrature rule. These temporal inte-

gration points are called as temporal slices. As the linear shape function is used in time, the

number of temporal slices in each temporal layer should be two or more for a full integration.

The number of temporal slices changes the effective time increment. Thus, using more than

two slices is beneficial from the viewpoint to use a large time increment. In this thesis, three
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temporal slices are defined in each temporal layer for verifying the influence of the number

of temporal slices. Finally, integration points for space-time volume are defined on each

temporal slice.

3.4.1.1 One Temporal Layer Case

Just one temporal layer can be used if the intersection configuration is time-invariant.

This temporal layer is identical with the entire space-time element. A standard space-

time element (non-intersected element) and a space-time element cut by the time-invariant

interface (fixed interface) belong to this case.

3.4.1.2 Two Temporal Layers Case

Multiple temporal layers are needed when a moving interface exists. As trilinear space-

time elements (QUAD4 in space and linear in time t = [tn+, t
n+1
− ]) are used in this thesis,

temporal layers are easily detected by the change of nodal level set function values in time.

The left figure of Figure 3.3 illustrates the detection of elementwise temporal layers by nodal

level set function values. A nodal level set function at spatial node 3; ϕ3, changes from a

positive to a negative value, creating two topological different intersection configurations in

this space-time element. A red dashed line indicates the interface between two temporal

layers. The interface is the set of all point with time t∗ which is defined by ϕ3 as follows:

t∗ = −
ϕ3(t

n
+)

ϕ3(t
n+1
− )− ϕ3(tn+)

(tn+1
− − tn+) + tn+ . (3.15)

Therefore, two layers are detected across t∗ in this space-time element. Colored slices at

the right figure of Figure 3.3 is called as elementwise temporal slices. These slices indicate

temporal integration points. The example of Figure 3.3 has six temporal slices (three slices

in each temporal layer).
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Figure 3.3: Temporal layers and temporal integration points (2 layers case)

3.4.1.3 Three Temporal Layers Case

The procedure for the three temporal layers case is identical to the case of two temporal

layers. Assuming that the nodal level set functions at node 3 and 4, ϕ3 and ϕ4, change from

positive to negative values as shown on the left figure of Figure 3.4, the temporal layers are

defined by the following two time: t∗1 and t∗2 (t∗1 < t∗2), and three temporal layers are

defined:

t∗1 = −
ϕ4(t

n
+)

ϕ4(t
n+1
− )− ϕ4(tn+)

(tn+1
− − tn+) + tn+ , (3.16)

t∗2 = −
ϕ3(t

n
+)

ϕ3(t
n+1
− )− ϕ3(tn+)

(tn+1
− − tn+) + tn+ . (3.17)

The right figure of Figure 3.4 shows an example of a configuration of elementwise temporal

slices with nine temporal slices (three slices in each temporal layer).

Figure 3.4: Temporal layers and temporal integration points (3 layers case)
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3.4.2 Integration Points for Space-Time Volume

Integration points for the space-time volume are determined for each temporal slice based

on the elementwise temporal layer approach. The method for setting volume integration

points on one temporal slice is exactly identical to the standard method of the XFEM and

thus, higher-dimensional simplex triangulation [48, 49, 47] is not necessary. The spatial

intersection configuration is created by Delaunay triangulation on each temporal slice such

that each triangle is occupied by exactly one phase and the interface is discretized by triangle

edges. Integration points for space-time volume are defined on each triangle. Figure 3.5 shows

two examples of the setting of integration points for space-time volume in one space-time

element. The symbol ∗ marks an integration point for volume integral and red lines indicate

edges of a space-time interface within the space-time element. The left and right figures

of Figure 3.5 are two and three temporal layer cases corresponding to Figures 3.3 and 3.4

respectively.

Figure 3.5: integration points for space-time volume
(left: 2 temporal layers, right: 3 temporal layers)

As Delaunay triangulation is applicable to 2D and 3D problems, the above approach is

directly applicable to spatially three-dimensional problems.

Integration weights for these integration points are computed by the product of spatial
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integration weights and temporal integration weights. Focusing on one temporal slice and

assuming wt as its temporal weight, integration weights of integration points for space-time

volume on this temporal slice; w̃vol
st , are computed by wt and spatial volume integration

weights for these points; wvol
s :

w̃vol
st = wtw

vol
s . (3.18)

3.4.3 Integration Points for Space-Time Interface

This section describes the approach for computing integrals over a space-time interface.

In the standard XFEM for two-dimensional spatial domain, interface integration points are

generated on a line corresponding to a spatial interface at some time t. On the other

hand, an interface in the space-time XFEM (spatially two-dimensional case) is a three-

dimensional plane (one order higher dimension space than the standard XFEM) within a

space-time element. Integration points for space-time interface should be generated onto

this three-dimensional plane. Therefore, these interface integration points are independent

of the volume integration approach using elementwise temporal layers and temporal slices.

The shape of interfaces in a spatially two-dimensional space-time element is limited to

a triangle, quadrangle, pentagon and hexagon. In this research, a space-time interface is

partitioned by Delaunay triangulation and integration points for this space-time interface

are defined on every triangle. Figure 3.6 shows examples of space-time interface integration

points for the cases of triangle and hexagon interfaces. The case of a triangle interface

(left figure) does not need Delaunay triangulation. The case of a hexagon interface (right

figure) uses Delaunay triangulation to generate four triangles. The outer red line marks the

configuration of a space-time interface and inner red lines indicate the edges of the triangles

created by Delaunay triangulation.

Based on the proposed elementwise temporal layer approach, if the spatial dimension is

d, the setting of volume integration points and interface integration points for the space-
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time XFEM can be performed by the same techniques applicable to d-dimensional standard

XFEM. Thus, the proposed approach does not require higher-dimensional decomposition like

the simplex triangulation used by [47]. This provides a great advantage in terms of the actual

implementation. Integration weights for these points are determined by the quadrature rule

on each triangle defined on a space-time interface.

Figure 3.6: integration points for space-time interface
(left: triangle interface, right: hexagon interface)

3.4.4 Face-Oriented Ghost-Penalty Stabilization

Interfaces are immersed in the background meshes based on the iso-contour of the level

set function ϕ. Intersections might produce very small space-time integration subdomains

which lead an ill-conditioning problem. This ill-conditioning problem has severe impact

especially for moving interface problems, because the motion of an interface usually creates

tiny integration subdomains configuration when this interface moves across an elemental

edge.

The main issue of this ill-conditioning is that numerical fluxes are insufficiently controlled

by the weak form of the governing equations. The reader is referred to [34, 52] for the detailed

discussion in terms of this ill-conditioning problem. The face-oriented ghost-penalty method

[55, 56] has been proposed to mitigate this ill-conditioning problem. The main idea of the
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face-oriented ghost-penalty method is to penalize a jump of numerical flux across elemental

edges. A general weak form of the face-oriented ghost-penalty method as follows:

Rgp =
∑
i

mb
i∑

m=1

∑
Γgp∈F

∑
p=A,B

∫
Γgp

dΓ ηgpi [[Dmwp
i ]]gp[[D

mupi ]]gp , (3.19)

where Dm(·) means a normal derivative of order m: Dm(·) = ∂m(·)
∂xj

m n̂j, m
b
i is the highest

order of interpolation of the i-th state variable ui and ηgpi is a penalty factor of the face-

oriented ghost-penalty method related to ui. F denotes a set of elemental faces of intersected

elements Γgp. [[·]]gp denotes a jump operator of a state variable across the face Γgp between

two adjacent elements, element 1 Ω1
e and element 2 Ω2

e:

[[a]]gp = a|Ω1
e
− a|Ω2

e
. (3.20)

When bilinear elements are used in space as done in this thesis, (3.19) is computed only up

to the first interpolation order m = 1:

Rgp =
∑
i

∑
Γgp∈F

∑
p=A,B

∫
Γgp

dΓ ηgpi

[[
∂wp

i

∂xj

]]
gp

n̂j

[[
∂upi
∂xk

]]
gp

n̂k . (3.21)

In the face-oriented ghost-penalty method, the jump terms are integrated over the entire

face, individually for each phase that is considered. Thus, this method integrates twice over

an intersected edge in a solid-solid problem, using different interpolation functions and state

variables.

This method is also useful to mitigate an ill-conditioning problem due to small intersected

space-time volume in the space-time XFEM. The extension of (3.21) for the space-time

XFEM is as follows based on the same idea of [50]:

R̃gp =
∑
i

∑
Pgp∈G

∑
p=A,B

∫
Pgpe

dP ηgpi

[[
∂wp

i

∂zj

]]
gp

N̂j

[[
∂upi
∂zk

]]
gp

N̂k , (3.22)

where G denotes a set of elemental faces of space-time intersected elements Pgp, z is the

generalized coordinate including space and time z = (x, t), and N̂i denotes the space-time
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normal. Integration points for (3.22) are set on faces shared by space-time element neighbors

Pgp to stabilize the numerical flux around space-time interfaces. As a space-time slab has

only one element along the time axis, Pgp is the x−t or y−t plane of an intersected space-time

element. Figure 3.7 is an example of setting of these integration points between adjacent

two space-time intersected elements.

Figure 3.7: Space-time integration points for face-oriented ghost-penalty stabilization

3.5 Structural Analysis using Space-Time XFEM

This section describes a spatially two-dimensional structural problem using both the

standard XFEM (XFEM that discretizes only space) and the space-time XFEM. First, the

weak forms for both methods are summarized. The weak form for the space-time XFEM

has an additional term due to using a discontinuous Galerkin method in time. The spatial

domain is discretized by bilinear finite elements (QUAD4) in both method and the temporal

domain is discretized by linear finite elements. Thus, trilinear elements are used in the space-

time XFEM. This problem is a fixed interface problem and modeled by a total Lagrangian

formulation of the elasto-dynamics. Therefore, the number of temporal layer is always one

in the space-time XFEM. This thesis uses three temporal slices for each temporal layer in

the space-time XFEM. The Newmark method (3.7:γ = 0.9, β = 0.5) is used to integrate
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the governing equations in time when using the standard XFEM. At each time step, the

nonlinear problem is solved by the Newton’s method and the convergence criterion requires

a drop of the norm of the residual of 10−6 relative to the norm of the initial residual. In each

Newton step, the system of linearized equations is solved by GMRES (generalized minimal

residual method) [83].

Results of both the XFEM and the space-time XFEM are compared. The proposed

space-time allows for a larger time increment ∆t than the standard XFEM. In addition,

this example verifies the implementation of Nitsche’s method for the space-time XFEM. To

this end, a dummy interface is introduced, i.e. both phases represent the same material.

The results of the space-time XFEM and space-time FEM without the dummy interface are

compared.

3.5.1 Governing Equations and Finite Element Discretization

This section assumes the elasto-dynamics based on the finite strain theory and the hy-

perelastic material. The material dumping is not considered in this section. Assuming a

two-phase transient structural problem, the structural response is governed by the following

momentum equation:

ρp
∂2Up

i

∂t2
=
∂Πp

iJ

∂XJ

+ ρpBp
i in Ωp

0 . (3.23)

Here, ρp is density, Up
i is displacement, Πp

iJ is the first Piola-Kirchhoff stress tensor, and

Bp
i is a body force constant at phase p = {1, 2}. To use linear shape functions in time and

restrict time derivative terms up to the first derivative in the space-time XFEM, (3.23) is

split into two equations by introducing solid velocity V p
i :

ρp
∂V p

i

∂t
=
∂Πp

iJ

∂XJ

+ ρpBp
i in Ωp

0 , (3.24)

∂Up
i

∂t
= V p

i in Ωp
0 . (3.25)
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A compressible neo-Hookean model (Belytschko et al. [84]) is used as a material constitutive

law for the solid phase:

W p =
1

2
λp
(
ln(detF p)

)2
+

1

2
µp
(
Cp

II − 3− 2 ln(detF p)
)
, (3.26)

Sp
IJ = 2

∂W p

∂Cp
IJ

= λp ln(detF p)Cp−1
IJ + µp(δIJ − Cp−1

IJ ) , (3.27)

where W p is the hyperelastic function (strain energy density function), Sp is the second

Piola-Kirchhoff stress tensor, F p is the deformation gradient tensor, Cp is the right Cauchy-

Green tensor, λp and µp mean the Lamé constants at phase p. These λp and µp can be

expressed in terms of Young’s modulus Ep and Poisson’s ratio νp as follows:

λp =
νpEp

(1 + νp)(1− 2νp)
, (3.28)

µp = Gp =
Ep

2(1 + νp)
. (3.29)

On the outer surface, the traction free boundary condition is applied. The traction bound-

ary condition and the continuity of displacement and velocity are applied at the interface

between two phases in the initial configuration Γ0int:

[[Ti]] = T 1
i − T 2

i = Π1
iJ n̂

1
0J − Π2

iJ n̂
2
0J = 0 on Γ0int , (3.30)

[[Ui]] = U1
i − U2

i = 0 on Γ0int , (3.31)

[[Vi]] = V 1
i − V 2

i = 0 on Γ0int , (3.32)

where n̂p
0 is an outward normal from phase p in the initial configuration.

The finite element discretization of the XFEM at time tn is as follows based on the total

Lagrangian formulation:

R =Rvol +Rint +Rgp = 0 , (3.33)

Rvol =
2∑

p=1

[∫
Ωp

0

dΩ δUp
i

(
ρ
∂V p

i

∂t
− ρpBp

i

)
+

∫
Ωp

0

dΩ
∂δUp

i

∂XJ

Πp
iJ

]
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+
2∑

p=1

∫
Ωp

0

dΩ δV p
i ρ

p

(
∂Up

i

∂t
− V p

i

)
, (3.34)

Rint =−
∫
Γ0int

dΓ [[δUi]]{ΠiJ}n̂1
0J −

∫
Γ0int

dΓ {δΠiJ}n̂1
0J [[Ui]] +

∫
Γ0int

dΓ [[δUi]]η
int
u [[Ui]] , (3.35)

Rgp =
2∑

p=1

∑
e∈Γp

0gp

∫
Γp
0gpe

dΓ ηgpv

[[
∂δV p

i

∂XJ

]]
gp

n̂p
0J

[[
∂V p

i

∂XK

]]
gp

n̂p
0K

+
2∑

p=1

∑
e∈Γp

0gp

∫
Γp
0gpe

dΓ ηgpu

[[
∂δUp

i

∂XJ

]]
gp

n̂p
0J [[Π

p
iK ]]gpn̂

p
0K , (3.36)

where δUp
i and δV p

i are admissible test functions for displacement Up
i and velocity V p

i at each

phase p and Ωp
0 is a domain of phase p in the initial configuration. Rvol, Rint and Rgp are

residuals of the volume contribution, the interface contribution and the contribution by the

face-oriented ghost-penalty method, respectively. In (3.36), the first PK stress Πp is used as

numerical flux by following the work of Lawry et al. [75]. To enforce the interface conditions

(3.30)-(3.36), the interface contribution (3.35) is computed by the symmetric Nitsche method.

When using a time stepping scheme, time derivative terms are approximated by the Newmark

method (3.7) as a standard time stepping scheme.

On the other hand, the finite element discretization is applied also to approximate the

time derivative terms in the space-time XFEM. The weak form of the space-time XFEM is

defined in a space-time slab Qn as follows:

R̃ =R̃vol + R̃int + R̃disc + R̃gp = 0 , (3.37)

R̃vol =
2∑

p=1

[∫
Qn,p

0

dQ δUp
i

(
ρp
∂V p

i

∂t
− ρpBp

i

)
+

∫
Qn,p

0

dQ
∂δUp

i

∂XJ

Πp
iJ

]

+
2∑

p=1

∫
Qn,p

0

dQ δV p
i ρ

p

(
∂Up

i

∂t
− V p

i

)
, (3.38)

R̃int =−
∫
Pn
0int

dP [[δUi]]{ΠiJ}N̂p
0J −

∫
Pn
0int

dP {δΠiJ}N̂p
0J [[Ui]]

+

∫
Pn
0int

dP [[δUi]]η
int
u [[Ui]] , (3.39)
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R̃disc =
2∑

p=1

∫
Pn,p
0+

dΩ δUp
i

∣∣n
+
ρp[[Up

i ]]
n
± +

2∑
p=1

∫
Pn,p
0+

dΩ δV p
i

∣∣n
+
ρp[[V p

i ]]
n
± , (3.40)

R̃gp =
2∑

p=1

∑
e∈Pn,p

0gp

∫
Pn,p
0gpe

dP ηgpv

[[
∂δV p

i

∂ZJ

]]
gp

N̂p
0J

[[
∂V p

i

∂ZK

]]
gp

N̂p
0K

+
2∑

p=1

∑
e∈Pn,p

0gp

∫
Pn,p
0gpe

dP ηgpu

[[
∂δUp

i

∂ZJ

]]
gp

N̂p
0J [[Π

p
iK ]]gpN̂

p
0K , (3.41)

where N̂ p
0 is an outward space-time normal from phase p in the initial configuration, and

Z is a generalized coordiante including space and time; Z = (X, t). As fixed interfaces are

always used based on the total Lagrangian formulation, a space-time normal N̂ p
0 is always

parallel to a corresponding spatial normal n̂p
0 (temporal component of N̂0 is always zero).

R̃vol, R̃int and R̃gp are residuals of the volume contribution, the interface contribution and the

contribution by the face-oriented ghost-penalty method, respectively. R̃disc is an additional

residual computed on the lower bound of a space-time slab P n,p
0+ due to the discontinuous

Galerkin method used in time.

3.5.2 Numerical Example 1: Beam Bending due to Body Force

The first benchmark problem of the space-time XFEM is a transient structural problem.

Through this example, the efficiency of the space-time method versus the Newmark time

stepping scheme is demonstrated. The implementation of Nitsche’s method is verified by

comparing results of the space-time XFEM and space-time FEM without interface. The

computational approaches compared in this example are summarized at Table 3.2 along with

the abbreviations are used in the following discussions. The rows of Table 3.2 denote spatial

discretization methods and columns of Table 3.2 denote temporal discretization methods.

Figure 3.8 shows a computational domain for FEM and ST-FEM in the initial configura-

tion. Fixed Dirichlet boundary conditions (Ux = Uy = Vx = Vy = 0) are applied on the left

boundary Γdbc and the solid phase deforms due to the body force acing downwards in vertical

direction. Figure 3.9 shows the computational domain for the XFEM and ST-XFEM. The



www.manaraa.com

35

Table 3.2: Computational methods for structural problem
Standard Time Stepping Space-Time Method

(Newmark method)

standard Finite Element Method FEM ST-FEM
eXtended Finite Element Method XFEM ST-XFEM

spatial domain consists of two phase Ω1
0 and Ω2

0 which are made by identical solid materials

and an interface is introduced as a dummy interface to verify the implementation of Nitsche’s

method. The parameters for geometry and material are summarized in Table 3.3. As the

interface in Figure 3.9 is just a dummy interface, different spatial discretization (FEM and

XFEM) should compute exactly identical results in this problem.

Figure 3.8: Model for FEM and ST-FEM Figure 3.9: Model for XFEM and ST-XFEM

Table 3.3: Parameters for geometry and material (structural problem)
Group Description Parameter

Geometry domain size Lx = 1.50m
Ly = 0.50m

point A (Lx, Ly/2) = (1.50, 0.25)m
point B (0.44Lx, Ly/2) = (0.66, 0.25)m
angle of interface θ = π/8rad

Solid density ρ1 = ρ2 = 1000kg/m3

Young’s modulus E1 = E2 = 1MPa
Poisson’s ratio ν1 = ν2 = 0.4
body force b1 = b2 = (0,−10)m/s2

The structural response is simulated up to time t = 1.782s. The size of the spatial

discretization h is set as h = 0.25, 0.125, 0.0625, 0.03125, 0.02083m and the size of the tem-

poral discretization ∆t is set as ∆t = 0.162, 0.054, 0.018s respectively. The reference solution

for the convergence study is the result of FEM (standard finite element computed by the
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Newmark method) with the finest spatial and temporal discretization (h = 0.0125m and

∆t = 0.001s).

The structural response is monitored by the tip displacements at point A in Figures 3.8

and 3.9, U tip
x and U tip

y , the strain energy Estr and the kinetic energy Ekin:

U tip
x = U1

x

∣∣
A

or U2
x

∣∣
A
, (3.42)

U tip
y = U1

y

∣∣
A

or U2
y

∣∣
A
, (3.43)

Estr =
2∑

p=1

∫
Ωp

0

dΩ W p , (3.44)

Ekin =
2∑

p=1

∫
Ωp

0

dΩ
1

2
ρpV p2 , (3.45)

where W p is the hyperelastic function of phase p defined in (3.26). In Figure 3.10, the left

diagram shows the histories of U tip
y using both the XFEM and the space-time XFEM with

the finest model (h = 0.02083m). The green solid line is the history of reference solution.

The other solid lines represent the histories of the space-time XFEM and dashed lines mean

histories of the XFEM using three time step sizes, ∆t. Results of the space-time XFEM with

∆t < 0.054s exactly overlap with the line of a reference solution. The top right figure shows

the initial phases at t = 0s and the bottom right figure is a snapshot at t = 1.35s colored by

the von Mises stress using the space-time XFEM (h = 0.02083m and ∆t = 0.18s). The red

solid line in the left figure is the configuration that corresponds to these snapshots. As the

face-oriented ghost-penalty method is applied in both the spatial XFEM and the space-time

XFEM, the condition number of the Jacobian is reduced (e.g. from the order of 1020 to the

order of 1012 using the space-time XFEM with h = 0.02083m and ∆t=0.054s).

Figures 3.11 and 3.12 illustrate the spatial size dependency of the normalized L2 errors

against the reference solution. The normalized L2 errors are defined as follows:

Err(a) =

√∫
dt(a− aref)2∫

dta2ref
(a = U tip

x , U tip
y , Estr and Ekin) . (3.46)
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Figure 3.10: History of U tip
y and snapshot of deformation

(right figures: results of space-time XFEM with h = 0.02083m and ∆t = 0.18s)

Figure 3.11: Spatial size dependency of L2 errors of tip displacements U tip
x and U tip

y
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Figure 3.12: Spatial size dependency of L2 errors of kinetic energy Ekin and strain energy
Estr

Circle and square markers denote the results of the spatial and space-time FEM (FEM and

ST-FEM, no interface case). Dashed and solid lines represent the results of the spatial and

space-time XFEM (XFEM and ST-XFEM). Each color represents a different time step size.

First, it is confirmed that the L2 errors of the FEM and XFEM (ST-FEM and ST-XFEM)

agree well in both spatial method and space-time method. The implementation of Nitsche’s

method in the space-time XFEM was verified. Second, comparing the XFEM (dashed lines)

and the space-time XFEM (solid lines), the rate of convergence of the space-time XFEM is

higher than the one of the XFEM. The space-time XFEM uses three temporal quadrature

points in each temporal layer and ∆t/3 is an approximate time increment substantially.

This interpretation is confirmed by the fact that results of the XFEM with ∆t = 0.054s

(blue dashed line) and results of the space-time XFEM with ∆t = 0.162s (black solid line)

are almost identical. As the effective time step in the space-time XFEM is smaller than in

the spatial XFEM, the space-time XFEM has a higher rate of convergence. The error also

plateaus at a larger nominal time step; the error stagnates even reducing the time step size

as the error is dominated by the spatial discretization error.
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Figure 3.13: Temporal size dependency of L2 error of tip displacements U tip
x and U tip

y

Figure 3.14: Temporal size dependency of L2 error of kinetic energy Ekin and strain energy
Estr

Figures 3.13 and 3.14 show the temporal size dependency of the normalized L2 errors.

Different colors represent different spatial element sizes. As the effective time increment of

the space-time XFEM is about ∆t/3, the convergence of the space-time XFEM is higher

than the one of the spatial XFEM. The results of the spatial XFEM is nearly reproduced

by the space-time XFEM with three times larger ∆t, when ∆t > 0.05. The space-time

XFEM plateaus for large ∆t when compared with the standard XFEM. The efficiency of the

proposed space-time XFEM was confirmed from this structural problem.
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3.6 Fluid Analysis using Space-Time XFEM

This section summarizes spatially two-dimensional fluid problems using both the XFEM

(XFEM that discretizes only space) and the space-time XFEM. The flow is modeled by

the incompressible Navier-Stokes fluid in this section. The spatial domain is discretized by

bilinear finite elements (QUAD4) in both methods and the temporal domain is discretized by

linear finite elements in the space-time XFEM. Thus, trilinear elements are used in the space-

time XFEM. In the space-time XFEM, three temporal slices are defined in each temporal

layer. At each time step, the nonlinear problem is solved by the Newton’s method and the

convergence criterion requires a drop of the norm of the residual of 10−6 relative to the norm

of the initial residual. In each Newton step, the system of linearized equations is solved by

GMRES.

There are two examples in this section. Numerical example 2 (Section 3.6.2) is a spatially

two-dimensional unsteady fluid problem around a fixed cylinder, which is the well-known

DFG 2D-3 benchmark problem proposed by Schäfer and Turek et al. [80]. Numerical

example 3 (Section 3.6.3) is a transient fluid problem with a moving interface. This problem

was studied previously by Dütsch et al. [85] and Guilmineau et al. [86].

3.6.1 Governing Equations and Finite Element Discretization

This section summarizes the weak forms of a transient fluid problem for both the XFEM

and the space-time XFEM, assuming a spatially two-dimensional fluid domain around a solid

structure. Governing equations are the momentum equation and the continuity equation of

the incompressible Navier-Stokes fluid as follows:

ρf
∂vfi
∂t

+ ρfvfj
∂vfi
∂xj

=
∂σf

ij(v
f , pf )

∂xj
+ ρfbfi in Ωn,f , (3.47)

∂vfi
∂xi

= 0 in Ωn,f , (3.48)
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where vfi , p
f and ρf are the velocity, the pressure and the density of the fluid. bfi is the

body force and Ωn,f denotes the fluid domain at time tn, σf
ij is the Cauchy stress tensor of

a Newtonian fluid:

σf
ij(v

f , pf ) = −pfδij + µf

(
∂vfi
∂xj

+
∂vfj
∂xi

)
, (3.49)

where µf is the dynamic viscosity of a fluid. As an interface condition at the fluid-solid

interface, the continuity of velocity is prescribed:

vfi = vstructi on Γn,f
int , (3.50)

where Γn,f
int means an interface at time tn and vstructi is the velocity of the structure, which is

zero at the case of a fixed interface and non-zero at the case of a moving interface.

The finite element discretization of the standard XFEM at time tn is defined by the

following weak form defined in the current configuration.

Rf =Rf
vol +Rf

int +Rf
gp , (3.51)

Rf
vol =

∫
Ωn,f

dΩ δvfi ρ
f

(
∂vfi
∂t

+ vfj
∂vfi
∂xj
− bfi

)
+

∫
Ωn,f

dΩ
∂δvfi
∂xj

σf
ij(v

f , pf )

+

∫
Ωn,f

dΩ δpf
∂vfi
∂xi

+
∑

e∈Ωn,f

∫
Ωn,f

e

dΩ τ fm

(
vfj
∂δvfi
∂xj

+
1

ρf
∂δpf

∂xi

)
r̄fi (v

f , pf )

+
∑

e∈Ωn,f

∫
Ωn,f

e

dΩ τ fc
∂δvfj
∂xj

∂vfi
∂xi

, (3.52)

Rf
int =−

∫
Γn
int

dΓ δvfi σ
f
ij(v

f , pf )n̂j −
∫
Γn
int

dΓ δpf n̂f
i (v

f
i − vstructi )

−
∫
Γn
int

dΓ σ̃f
ij(δv

f )n̂f
j (v

f
i − vstructi ) +

∫
Γn
int

dΓ ηintδvfi v
f
i , (3.53)

Rf
gp =

∑
e∈Γn,f

GP

∫
Γn,f
GPe

dΓ ηgpv

[[
∂δvfi
∂xj

]]
gp

n̂f
j

[[
∂vfi
∂xk

]]
gp

n̂f
k

+
∑

e∈Γn,f
GP

∫
Γn,f
GPe

dΓ ηgpp

[[
∂δpf

∂xi

]]
gp

n̂f
i

[[
∂pf

∂xj

]]
gp

n̂f
j . (3.54)

Rf
vol is the volume contribution; here the residual-based variational multiscale method [71] is
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applied for the convection and incompressibility stabilizations in (3.52). The WTSE option

(∂vfi /∂t term is excluded) is applied (Tezduyar et al. [87]). τ fm and τ fc are elementwise

stabilization parameters for the advection and continuity terms:

τ fm =

[(
2ρf

∆t

)2

+ ρf
2
vfTGvf + µf 2

]−1/2

, (3.55)

τ fc =

[
τ fmTr(G)

]−1

, (3.56)

where Gij =
∑2

k=1(∂ξk/∂xi)(∂ξk/xj) and ξk is the isoparametric coordinate of each element.

In (3.52), σ̃f
ij is a deviatoric part of the fluid Cauchy stress, n̂f

i is an outward facing normal

from the fluid phase and r̄fi is a scalar residual of the momentum equation defined as follows:

r̄fi (v
f , pf ) = ρf

∂vfi
∂t

+ ρfvfj
∂vfi
∂xj
−
∂σf

ij(v
f , pf )

∂xj
− ρfbfi . (3.57)

Rf
int is the interface contribution based on the symmetric Nitsche method. The second term

of RHS of (3.53) is the mass-preserving adjoint consistency term (negative sign is correct)

based on Schott et al. [73]. While there are several versions of Nitsche’s method, this

thesis chooses empirically the above version of Nitshce’s method because of its stability at

computations in the proposed space-time XFEM. Rf
gp is the additional contribution by the

face-oriented ghost-penalty method to stabilize numerical flux at small intersected elements.

ηint is the penalty factor of Nitsche’s method, and ηgpv and ηgpp are the penalty factors of the

face-oriented ghost-penalty method defined as follows [72, 73]:

ηint = αint

(
µf

h
+
ρf∥vf∥∞

6
+

ρfh

12∆t

)
, (3.58)

ηgpv = αgp
v h

(
µf +

ρfh2

10∆t

)
, (3.59)

ηgpp = αgp
p h

2

(
µf

h
+
ρf∥vf∥∞

6
+

ρfh

12∆t

)−1

, (3.60)

where αint, αgp
v and αgp

p are dimensionless scalar and these are set as αint = 50, αgp
v = 10−3

and αgp
p = 10−4 respectively. h is a representative spatial size and ∥vf∥∞ is the infinity norm

of the fluid velocity.
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On the other hand, the finite element discretization for the space-time XFEM is defined

as follows. The discontinuous Galerkin method is applied in time. The symmetric Nitsche

method on the interface and the face-oriented ghost-penalty method are also applied:

R̃f =R̃f
vol + R̃f

int + R̃f
disc + R̃f

gp , (3.61)

R̃f
vol =

∫
Qn,f

dQ δvfi ρ
f

(
∂vfi
∂t

+ vfj
∂vfi
∂xj
− bfi

)
+

∫
Qn,f

dQ
∂δvfi
∂xj

σf
ij(v

f , pf )

+

∫
Qn,f

dΩ δpf
∂vfi
∂xi

+
∑

e∈Qn,f

∫
Qn,f

e

dQ τ fm

(
vfj
∂δvfi
∂xj

+
1

ρf
∂δpf

∂xi

)
r̄fi (v

f , pf )

+
∑

e∈Qn,f

∫
Qn,f

e

dQ τ fc
∂δvfj
∂xj

∂vfi
∂xi

, (3.62)

R̃f
int =−

∫
Pn
int

dP δvfi σ
f
ij(v

f , pf )N̂ f
j −

∫
Pn
int

dP δpfN̂ f
i (v

f
i − vstructi )

−
∫
Pn
int

dP σ̃f
ij(δv

f )N̂ f
j (v

f
i − vstructi ) +

∫
Pn
int

dP ηintδvfi (v
f
i − vstructi ) , (3.63)

R̃f
disc =

∫
Pn,f
+

dΩ δvfi
∣∣n
+
ρf [[vfi ]]

n
± , (3.64)

R̃f
gp =

∑
e∈Pn,f

gp

∫
Pn,f
gpe

dP ηgpv

[[
∂δvfi
∂zj

]]
gp

N̂ f
j

[[
∂vfi
∂zk

]]
gp

N̂ f
k

+
∑

e∈Pn,f
gp

∫
Pn,f
gpe

dP ηgpp

[[
∂δpf

∂zi

]]
gp

N̂ f
i

[[
∂pf

∂zj

]]
gp

N̂ f
j , (3.65)

where N̂ f is an outward space-time normal from the fluid phase. R̃f
vol and R̃f

int are the

volume and interface contributions of the weak form of the space-time XFEM. R̃f
disc is the

additional residual comparing with the XFEM (3.51), which is defined on the boundary

between the current and the past space-time slabs and originated from applying the discon-

tinuous Galerkin method in time. R̃f
vol is the contribution of the face-oriented ghost-penalty

method in the space-time XFEM. zi is the generalized coordinate including space and time.

Penalty coefficients for Nitsche’s method and the face-oriented ghost-penalty method are the

same as those of the XFEM (3.58) - (3.60).
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3.6.2 Numerical Example 2: Unsteady Flow around Fixed Cylinder (DFG 2D-3

Benchmark Problem)

To demonstrate the efficiency of the space-time XFEM, a transient fluid problem with

a fixed interface is studied. This second benchmark problem is a spatially two-dimensional

fluid problem for the unsteady flow around a fixed cylinder, which is well-known as DFG

2D-3 benchmark problem proposed by Schäfer, Turek, et al. [80]. A fixed cylinder located

at (xcyl, ycyl) = (0.2, 0.2)m is embedded in an Eulerian fluid domain which is modeled by

the incompressible Navier-Stokes equations (3.49). Figure 3.15 shows the geometry of this

problem. The geometric parameters and the material parameters are summarized in Table

3.4. These parameters are identical to settings of [80]. As the cylinder is fixed, the spatial

domain Ωn,f , the spatial interface Γn,f
int , the space-time volume Qn,f and the space-time

interface P n,f
int of fluid are time-invariant and thus, upper subscripts n for the volume and

boundary terms are omitted in this numerical example like Ωn,f → Ωf . Inlet velocities are

prescribed on the left edge Γinlet and defined by the time-dependent functions:

vinletx (0, y, t) = 4Ū
y(Ly − y)

L2
y

sin

(
πt

8

)
, vinlety (0, y, t) = 0m/s on Γinlet , (3.66)

vintx = vinty = 0m/s on Γint . (3.67)

No-slip boundary condition is applied on the upper and lower edges, Γnoslip, and on the

interface around a fixed cylinder, Γint. The right edge of this domain is a traction-free

boundary Γfree. The time interval of this simulation is 0 ≤ t ≤ 8s.

Figure 3.15: Model of fluid problem with fixed interface (DFG 2D-3 problem)
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Table 3.4: Geometrical and material parameters (DFG 2D-3 problem)
Group Description Parameter

Whole size Lx = 0.41m
Domain Ly = 2.20m
Cylinder diameter D = 0.1m

center xcyl = 0.2m
ycyl = 0.2m

Fluid density ρf = 1000kg/m3

kinematic viscosity νf = 10−3m2/s
body force bf = (0, 0)m/s2

maximum inlet velocity Ū = 1.5m/s
inlet velocity on Γinlet vinletx = 4ŪL−2

y (Ly − y)y sin(πt/8)
vinlety = 0m/s

interface velocity on Γint vcylx = vcyly = 0m/s

The accuracy of the flow solution is monitored by the drag coefficient; CD, lift coefficient;

CL, and pressure difference around the cylinder; ∆p, as functions of time in 0 ≤ t ≤ 8s:

CD(t) =
FD(t)

1/2ρf Ū2D
=

1

1/2ρf Ū2D

∫
Γint

dΓ

[
µf

(
∂vfx
∂y
−
∂vfy
∂x

)
ncyl
y − pfncyl

x

]
, (3.68)

CL(t) =
FL(t)

1/2ρf Ū2D
=

1

1/2ρf Ū2D

∫
Γint

dΓ

[
−µf

(
∂vfx
∂y
−
∂vfy
∂x

)
ncyl
x − pfncyl

y

]
, (3.69)

∆p(t) =pf (xcyl −D/2, ycyl, t)− pf (xcyl +D/2, ycyl, t)

=pf (0.15m, 0.2m, t)− pf (0.25m, 0.2m, t) , (3.70)

where ncyl = (ncyl
x , ncyl

y ) is the outward normal of the cylinder. The computation of the drag

and lift forces; FD and FL, are based on the method of John [88], considering the condition

of the interface velocities vintx = vinty = 0. ∆p is the difference between the left and right of

the cylinder like (3.70). In particular, the maximum CD; C
max
D , the maximum CL; C

max
L and

the pressure difference ∆p at time t = 8s (final time); ∆pfin are representative numerical

properties of the DFG 2D-3 benchmark problem. Reference values of [80] are summarized in

Table 3.5. As the face-oriented ghost-penalty method is applied in both the XFEM and the

space-time XFEM, the condition number of the Jacobian is reduced (e.g. from the order of

1013 to the order of 106 using the space-time XFEM with h/D = 0.1615 and ∆t = 0.02s).
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Table 3.5: Reference of DFG 2D-3 benchmark problem [80]
Cmax

D Cmax
L ∆pfin

lower bound 2.9300 0.4700 -0.1150
upper bound 2.9700 0.4900 -0.1050

(a) Maximum CD; C
max
D (b) Maximum CL; C

max
L

(c) Pressure Dif. ∆p at t = 8s; ∆pfin

Figure 3.16: Spatial size dependency of
Cmax

D , Cmax
L and ∆pfin

(400 time steps, ∆t = 0.02s)

•: Spatial XFEM
■: Space-Time XFEM
dashed line: upper and lower bounds in Table 3.5
gray band: range surrounded by upper and lower
bounds

Figure 3.16 illustrates the spatial size dependency of Cmax
D , Cmax

L and ∆pfin using both

the XFEM and the space-time XFEM with ∆t = 0.02s. h/D is a normalized spatial size by

the cylinder diameter D. Blue circles denote results of the XFEM and red squares denote

results of the space-time XFEM. Black dashed lines show the upper and lower bounds of the

reference work given in Table 3.5 and gray bands surrounded by dashed lines represent the

reasonable range within its upper and lower bounds. Tables 3.6 and 3.7 summarize the data

used in Figure 3.16. t(Cmax
D ) and t(Cmax

L ) denote the time when Cmax
D and Cmax

L occur.
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In terms of Cmax
D (Figure 3.16(a)), the computational results of both the XFEM and

the space-time XFEM overlap and Cmax
D of both methods converge to its lower bound of

the reference with almost the same rate of convergence. On the other hand, the spatial

size dependency of Cmax
L using both method is completely different in Figure 3.16(b). It is

confirmed that the influence of the time integration scheme is significant for the evaluation

of Cmax
L , unlike Cmax

D . The standard XFEM underestimates Cmax
L when ∆t = 0.2s and this

fact indicates that the standard XFEM needs a smaller time increment. The space-time

XFEM predicts larger Cmax
L than the XFEM and converges to the values that are within the

range of the reference work. This is because the space-time XFEM uses three integration

points along time axis and thus, the time increment is almost one-third of the XFEM when

the same ∆t is used in both method. Considering the finest model for the space-time XFEM

(model at the bottom of Table 3.7), Cmax
D and Cmax

L are obtained at t(Cmax
D ) = 3.9400s and

t(Cmax
L ) = 5.7000s respectively. Figure 3.17 shows the history of CD, CL and ∆p of the

corresponding model and snapshots of vorticity at time t = 4, 5.6 and 8s. While the flow

field around t(Cmax
D ) is at steady-state (top right figure of Figure 3.17), the flow field around

t(Cmax
L ) (middle right figure of Figure 3.17) is obviously unsteady. As Cmax

L is determined at

the unsteady region as a dynamical property, the influence of a time integration scheme is

significant and the space-time XFEM captures dynamic properties more efficiently because

the efficient time increment is smaller than the XFEM. Although ∆pfin does not exhibit a

clear convergence with the spatial size in Figure 3.16(c), ∆pfin computed by the space-time

XFEM converges in a gray band using finer mesh models.
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Figure 3.17: History of CD, CL, ∆p and vorticity in z: ωf
z

(bottom model in Table 3.9)

Table 3.6: Spatial size dependency of Cmax
D , Cmax

L and ∆pfin ( XFEM)
Spatial Time h/D ∆t Cmax

D Cmax
L ∆pfin t(Cmax

D ) t(Cmax
L )

Active DOFs Steps (-) (s) (-) (-) (kPa) (s) (s)

3552 400 0.2100 0.0200 3.2173 0.0992 -0.1122 3.9600 7.2000
4278 400 0.1615 0.0200 3.1518 0.1332 -0.1000 3.9400 6.8600
4530 400 0.1500 0.0200 3.1437 0.1847 -0.1047 3.9400 6.1400
5859 400 0.1105 0.0200 3.0870 0.1997 -0.0996 3.9400 6.6200
7635 400 0.0840 0.0200 3.0711 0.1985 -0.0988 3.9400 6.5200
13144 400 0.0618 0.0200 2.9977 0.2163 -0.1062 3.9400 6.4600
19444 400 0.0429 0.0200 2.9616 0.2164 -0.1078 3.9400 6.4000
37888 400 0.0276 0.0200 2.9323 0.2123 -0.1038 3.9400 6.3400
45872 400 0.0236 0.0200 2.9260 0.2101 -0.1030 3.9400 6.3400

Table 3.7: Spatial size dependency of Cmax
D , Cmax

L and ∆pfin (space-time XFEM)
Space-Time Time h/D ∆t Cmax

D Cmax
L ∆pfin t(Cmax

D ) t(Cmax
L )

Active DOFs Steps (-) (s) (-) (-) (kPa) (s) (s)

7104 400 0.2100 0.0200 3.2116 0.2735 -0.1015 3.9600 6.2200
8556 400 0.1615 0.0200 3.1502 0.3512 -0.1007 3.9400 6.0400
9060 400 0.1500 0.0200 3.1428 0.4504 -0.0987 3.9400 6.0000
11718 400 0.1105 0.0200 3.0877 0.4809 -0.1050 3.9400 5.9000
15270 400 0.0840 0.0200 3.0696 0.5295 -0.1187 3.9400 5.8400
26288 400 0.0618 0.0200 2.9992 0.5094 -0.0968 3.9400 5.7800
38888 400 0.0429 0.0200 2.9629 0.5073 -0.1044 3.9400 5.7400
74776 400 0.0276 0.0200 2.9336 0.4890 -0.1098 3.9400 5.7200
91744 400 0.0236 0.0200 2.9274 0.4893 -0.1094 3.9400 5.7000
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Figure 3.18 illustrates the temporal size dependency of Cmax
D , Cmax

L and ∆pfin using a

mesh with spatial size h/D = 0.0276. Tables 3.8 and 3.9 give the corresponding data of

Figure 3.18. ∆t means a discrete time increment in the XFEM and a length along the time

axis of a space-time slab Qn in the space-time XFEM. The temporal size dependency of

Cmax
D of both methods is similar because the steady-state like behavior is dominant when

the maximum CD is obtained. In terms of Cmax
L (Figure 3.18(b)), the results of the XFEM

become dramatically larger as ∆t decreases, but a much smaller ∆t is essential to reach the

range between upper and lower bounds (gray band). On the other hand, Cmax
L of the space-

time XFEM has a flat distribution with respect to ∆t around the reference upper bound.

The space-time XFEM can use larger ∆t than the XFEM to obtain converged solutions. The

distribution of ∆p of the space-time XFEM is also flatter than the XFEM, and these values

are located within the range between bounds. This temporal dependency study suggests

that the space-time XFEM can compute unsteady fluid problems more efficiently than the

XFEM.

Table 3.8: Temporal size dependency of Cmax
D , Cmax

L and ∆pfin (XFEM)
Spatial Time h/D ∆t Cmax

D Cmax
L ∆pfin t(Cmax

D ) t(Cmax
L )

Active DOFs Steps (-) (s) (-) (-) (kPa) (s) (s)

37888 250 0.0276 0.0320 2.9327 0.0862 -0.1058 3.9360 7.4560
37888 400 0.0276 0.0200 2.9323 0.2123 -0.1038 3.9400 6.3400
37888 800 0.0276 0.0100 2.9310 0.3327 -0.1001 3.9400 5.7600
37888 1000 0.0276 0.0080 2.9302 0.3649 -0.1023 3.9360 5.7520
37888 1200 0.0276 0.0067 2.9290 0.3670 -0.1039 3.9400 6.2200

Table 3.9: Temporal size dependency of Cmax
D , Cmax

L and ∆pfin (space-time XFEM)
Space-Time Time h/D ∆t Cmax

D Cmax
L ∆pfin t(Cmax

D ) t(Cmax
L )

Active DOFs Steps (-) (s) (-) (-) (kPa) (s) (s)

74776 250 0.0276 0.0320 2.9342 0.4620 -0.1087 3.9360 5.7280
74776 400 0.0276 0.0200 2.9336 0.4890 -0.1089 3.9400 5.7200
74776 800 0.0276 0.0100 2.9320 0.5032 -0.1090 3.9400 5.7100
74776 1000 0.0276 0.0080 2.9311 0.5041 -0.1090 3.9360 5.7120
74776 1200 0.0276 0.0067 2.9300 0.5042 -0.1090 3.9333 5.7133
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(a) Maximum CD; C
max
D (b) Maximum CL; C

max
L

(c) Pressure Drop ∆p at t = 8s; ∆pfin

Figure 3.18: Temporal size dependency of
Cmax

D , Cmax
L and ∆pfin

(h/D = 0.0276)

•: Spatial XFEM
■: Space-Time XFEM
dashed line: upper and lower bounds in Table 3.5
gray band: range surrounded by upper and lower
bounds

This numerical example is studied to compare the proposed space-time XFEM based

on the elementwise temporal layer and the space-time XFEM based on the simplex trian-

gulation like [47] (direct decomposition of a space-time slab). Table 3.10 summarizes the

computational results using space-time XFEM based on both approaches. As can be seen,

two approaches converge to the same results. At least for this example, the proposed ele-

mentwise temporal layer approach is equivalent to the simplex triangulation approach. The

details of this comparison is summarized in Appendix F.

Table 3.10: Comparison between different approaches for space-time integration
Approach Cmax

D Cmax
L ∆pfin t(Cmax

D ) t(Cmax
L )

(-) (-) (kPa) (s) (s)

Simplex triangulation 3.0876 0.4812 -0.1049 3.9600 5.9000
Elementwise temporal layer 3.0877 0.4809 -0.1050 3.9400 5.9000

(∆t = 0.2s, h/D = 0.1105, 11718 DOFs, 400 time steps)
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3.6.3 Numerical Example 3: Flow around an In-line Oscillating Cylinder

The third benchmark problem for the space-time XFEM is a spatially two-dimensional

transient fluid problem with a moving interface. The purpose of this numerical example

is to demonstrate the stability of the space-time XFEM for moving interface problems. In

this numerical example, there is an in-line oscillating circular cylinder which generates a

moving interface within a fluid that in initially at rest. The Reynolds number; Re, is 100

and the Keulegan-Carpentar number; Kc (ratio of drag force and inertial force), is 5 based

on the experiment of Dütsch et al. [85]. Flow induced by an in-line oscillating cylinder with

Re = 100 and Kc = 5 was characterized in a region result in the stable, symmetric and

periodic vortex shedding; see Tatsuno and Bearman [89]. The characteristic numbers Re

and Kc are defined as follows:

Re =
VxD

νf
, (3.71)

Kc =
Vx
fD

, (3.72)

where D is the diameter of the cylinder, Vx is the maximum velocity in x direction, and f is

the frequency of the motion of the cylinder. The fluid kinematic viscosity νf is determined

by νf = VxD/Re based on (3.71). The motion of the center of the cylinder is described by:

xcyl(t) =− A sin(2πft) , (3.73)

vcylx (t) =− 2πfA cos(2πft) = −Vx cos(2πft) , (3.74)

acylx (t) =4π2f 2A sin(2πft) . (3.75)

Parameter A is the amplitude of the cylinder motion in x direction and A is computed by

A = KcD/2π. The in-line force acting on the cylinder at time tn: Fx(t
n) is computed by:

Fx(t
n) =

∫
Γn
int

dΓ σf
ij(v

f , pf )n̂cyl
j = −

∫
Γn
int

dΓ pf n̂cyl
i +

∫
Γn
int

dΓ σ̃f
ij(v

f )n̂cyl
j , (3.76)
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where Γn
int denotes the moving interface at time tn, σ̃f

ij is the deviatoric part of σf
ij and n̂

cyl
j

is the outward normal of the cylinder (n̂cyl = −n̂f ).

As this numerical example is an important model for engineering structures such as

offshore platforms, there is a well-known approximation of the in-line force Fx called the

Morison equation. The Morison equation consists of contributions of the drag force and the

inertial force as follows (Chakratarti [90]):

Fx(t) = CD
1

2
ρfD

∣∣vcylx (t)
∣∣vcylx (t) + CM

1

4
ρfπD2acylx (t) . (3.77)

CD and CM are the drag and the added-mass coefficients respectively. These parameters are

characteristic measures of this benchmark problem. To evaluate CD and CM from compu-

tational results through the Morison equation, the following dimensionless in-line force is

useful instead of (3.77):

fx(τ) =
Fx(t)

1/2ρfV 2
xD

= −CD| cos(2πτ)| cos(2πτ) + CM
π2

Kc
sin(2πτ) , (3.78)

where τ is a cycle τ = t/T = ft of the cylinder motion. CD and CM can be computed by

the Fourier integral of (3.78):

CD = −3π

4

∫ τ0+1

τ0

dτ fx(τ) cos(2πτ) , (3.79)

CM =
2Kc

π2

∫ τ0+1

τ0

dτ fx(τ) sin(2πτ) , (3.80)

(3.79) and (3.80) correspond to the integration of one period starting from an arbitrary cycle

position τ0.

Numerical studies of this problem were reported by Dütsch et al. [85] and Guilmineau

and Queutey [86]. In these works, the flow was solved on an O-type structured fixed grid

using the FEM. The influence of the in-line oscillation of the cylinder is considered as a

time-dependent boundary condition on the fixed interface and thus, these computations are

based on the Lagrangian description because the cylinder does not move. Figures 3.19 - 3.21
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are reference results provided by [86]. In these figures, the results of [85] are also included.

Figure 3.19: Reference results of streamlines (Figure 7 of [86])

Another computational approach for this problem is an Eulerian approach, which com-

putes the flow on a fixed background mesh. The cylinder moves within a fixed grid based

on the Eulerian description. As the amplitude A of the in-line motion is not negligibly small

relative to the diameter D in this problem (A/D = Kc/2π ≃ 0.8), the ALE approach is not

appropriate because of the limitation of the deformation of ALE meshes. On the other hand,

the XFEM with an immersed moving interface can handle this problem based on the Eulerian
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Figure 3.20: Reference results of velocity fields (Figure 8 of [86])
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Figure 3.21: Reference results of in-line force (Figure 9 of [86])

description. When the XFEM with time stepping schemes is used, results have an error due

to a moving interface described in Section 3.1. This is because different discretization meth-

ods are applied in space and time respectively. In this case, additional treatments like the

ghost-fluid method [37, 38, 39, 40] are necessary to mitigate this error. On the other hand,

the proposed space-time XFEM does not suffer from this error because the finite element

discretization is applied in both space and time. Hence, the space-time XFEM is suitable

for this benchmark problem. The parameters for geometry and material are summarized in

Figure 3.22 and Table 3.11. The center region of |x/D| ≤ 1.5 and |y/D| ≤ 1.5 (Region A in

Tables 3.11 and 3.12) is discretized by fine square meshes (m×m meshes) and the outside

of this region (1.5 < |x/D| ≤ 51.5 or 1.5 < |y/D| ≤ 51.5) is discretized by exponentially

coarsened rectangle meshes. The “do-nothing” boundary conditions (traction free boundary

condition) are applied on the outer boundaries (x = ±Lx or y = ±Ly).
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Figure 3.22: Model of in-line oscillating cylinder (time tn)

Table 3.11: Parameters for geometry and material (in-line oscillation of cylinder)
Group Description Parameter

Cylinder diameter D = 0.01m
frequency of in-line oscillation f
amplitude of xcyl A = KcD/2π
center position xcyl(t) = −A sin(2πft)

ycyl = 0
maximum velocity in x Vx = max(vcylx ) = 2πfA

Grid whole size Lx/D = Ly/D = 51.5
fine mesh region (Region A) |x/D| ≤ 1.5, |y/D| ≤ 1.5

Fluid Reynolds number Re = 100
Keulegan-Carpenter number Kc = 5
kinematic viscosity νf = VxD/Re
body force bf = (0, 0)m/s2

The weak form of the space-time XFEM is (3.61). In this example, the spatial coordinates

x and y are non-dimensionalized by the diameter of the cylinder D. The time t is also non-

dimensionalized by the period T (or frequency f) as a cycle τ . The computation is performed

at −0.75 ≤ τ ≤ 5 and a temporal size of a space-time slab ∆τ = ∆t/T = 1/480. It should

be noted that the ghost-fluid method [37, 38, 39, 40] is not used here.

The in-line force is generated by the periodic motion of the moving cylinder as a periodic

sinusoidal wave. Figure 3.23 is a comparison of the dimensionless in-line force fx computed by
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Figure 3.23: Comparison of dimensionless in-line force fx
(a) XFEM (b) space-time XFEM
(Model 5 in Table 3.12, 0 ≤ τ ≤ 1)

the XFEM and the space-time XFEM. Pressure contribution of fx computed by the XFEM

(Figure 3.23(a)) highly oscillates and this oscillation is entirely due to a computational

error as comparison of the numerical results against the reference experiment [85] (Figure

3.21). The XFEM with time stepping schemes cannot guarantee the continuity of state

variables along time because the approximation of the time derivative terms fails due to

moving interfaces; see Section 3.1. Therefore, the XFEM with time stepping schemes is not

meaningful to evaluate CD and CM. On the other hand, fx computed by the space-time

XFEM (Figure 3.23(b)) has a smooth distribution which agrees well the experimental result

(Figure 10 of [85]) and computational results using the body-fitted FEM (Figure 9 of [86]).

As the finite element discretization is applied to both space and time in the space-time

XFEM, the effect of a moving interface is successfully captured and the continuity of state

variables along time is guaranteed.

Figure 3.24 shows the effect of the face-oriented ghost-penalty method in the space-time

XFEM. The left figure is the history of the condition number of the Jacobian as an indicator

of ill-conditioning. The right figure is the history of fx. Using the space-time XFEM without
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Figure 3.24: Effect of face-oriented ghost-penalty method
(Model 3 in Table 3.12)

the face-oriented ghost-penalty method (blue line in Figure 3.24), the condition number of

the Jacobian is large and fluctuates largely due to the creation of small intersected volume

by a moving interface. Finally, the transient analysis diverges at τ = −0.53125 at an early

stage due to ill-conditioning. On the other hand, the space-time XFEM with the face-

oriented ghost-penalty method (red line in Figure 3.24) reduces the condition number of the

Jacobian and its fluctuation. As the ill-conditioning problem is mitigated by the face-oriented

stabilization, stable computation is achieved in this case. The results shown in Figures 3.23

and 3.24 suggest that the space-time XFEM with the face-oriented ghost-penalty method is

a stable and efficient method for moving interface problems.

Figures 3.25 is the distribution of velocity in x: vfx using Model 5 in Table 3.12. There is

a good agreement between Figure 3.25 and Figure 3.19 (Figure 7 of [86]). Figure 3.27 shows

the distribution of normalized velocity vfx/Vx and vfy/Vx at four x locations in different phase

positions corresponding to Figure 3.25. These distributions agree well with the ones in Figure

3.20 (Figure 8 of [85] and [86]). Thus, the results again suggest that the proposed method

can reproduce numerical reference results using a moving interface problem.

Representative measures of this problem: drag coefficient CD and added-mass coefficient
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(a). 180◦ (b). 210◦ (c). 330◦

Figure 3.25: Distribution of vfx and streamlines at different phase positions θ
(θ = 2πτ = 2πft)

Table 3.12: Computational results and references of CD and CM (Re = 100 and Kc = 5)
Model Mesh Space-Time h/D ∆τ CD CM

(Region A) Active DOFs (Region A) (∆t/T )
at τ = 5

1 39× 39 27816 1/13 1/480 2.0319 1.4315
2 59× 59 45784 3/59 1/480 2.0633 1.4026
3 79× 79 68216 3/79 1/480 2.0911 1.4117
4 99× 99 94992 1/33 1/480 2.1142 1.4239
5 119× 119 126112 3/119 1/480 2.1198 1.4236

Ref.1 Table 1, Set C of [85] (experiment) 2.0900 1.4500
Ref.2 Table 2, Mesh 480× 400 of [86] 1/720 2.0800 1.4340

(Region A: |x/D| ≤ 3 and |y/D| ≤ 3)

Figure 3.26: Dimensionless in-line force fx (Model 5 in Table 3.12)
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CM are computed by the Fourier integral of the Morison equation (3.78)∼(3.80). Table 3.12

shows the dependency of CD and CM with respect to the spatial discretization size h/D and

reference solutions of [85] and [86]. CD and CM are evaluated at the fifth period (4 ≤ τ ≤ 5:

τ0 = 4 at (3.79) and (3.80)). The converged solution is obtained using the finest model

(Model 5) of Table 3.12. Using Model 5, the values of CD and CM are CD = 2.1198 and

CM = 1.4236. The difference of CD and CM with respect to results of Dütsch et al. [85]

are 1.4% and -1.8% respectively. Figure 3.26 shows the history of dimensionless in-line force

using Model 5. The total fx (black line) is the summation of the pressure contribution

(blue line) and the velocity contribution (green line) in this figure. The right figure is the

history at the fifth period which is actually used for computations of CD and CM. The

red line represents the approximation by the Morison equation (3.78). As [85] and [86]

reported, an approximation of fx by the Morison equation always has discrepancy around

peaks of fx like Figure 3.26 and this discrepancy reveals a limitation of the Morison equation.

Guilmineau et al. [86] also referenced Dütsch et al. [85] and the difference of CD and CM

were -0.5% and -1.1% respectively using an O-type structured fixed grid and a fixed interface

assuming time-dependent interface condition. Although the difference of CD and CM of the

proposed space-time XFEM is larger than [86], the difference of the proposed method from

the reference is less than 2% and thus, this computational result is still acceptable. In

addition, the proposed method handles a moving interface directly and thus, the space-time

XFEM with the face-oriented ghost-penalty method is an attractive method which has the

applicability for various moving interface problems.
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vfx/Vx vfy/Vx

Figure 3.27: Distribution of velocities at different phase positions: (a)180◦, (b)210◦, (c)330◦

(Model 5 in Table 3.12, corresponding to Figure 8 of Guilmineau et al. [86])
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3.7 Discussion

This chapter presents a space-time extended finite element method (space-time XFEM)

based on the elementwise temporal layer approach using the Heaviside enrichment and the

face-oriented ghost-penalty stabilization. for moving interface problems. A simple space-time

integration based on the summation of spatial integration at multiple temporal quadrature

points was introduced as the elementwise temporal layer approach. Each space-time element

is subdivided into multiple temporal layers along time by considering its intersection con-

figuration. Furthermore, temporal integration points are defined in each temporal layer and

each temporal layer is cut by planes on these points parallel to the spatial domain. The cross

sections created by this cut are called as the temporal slices in this thesis. As the number of

temporal slices in each temporal layer affects the effective time increment, a larger number

of slices is beneficial from the viewpoint to get a faster convergence in terms of the time

evolution. In this thesis, three temporal integration points are defined in each temporal

slice. Integration points for a space-time volume are distributed on each temporal slice using

the same numerical integration scheme used in the standard XFEM. Integration points for

space-time interface are set on a space-time interface which has the same dimension as the

spatial domain. If the spatial dimension of a system is d, the procedure to set volume and

interface integration points for the space-time XFEM is identical to the method for setting

the volume integration points for the d-dimensional spatial XFEM. As higher-dimensional

decompositions of a space-time slab like the simplex triangulation method are not needed,

the proposed space-time XFEM eases significantly the implementation of the space-time

integration. The space-time interface condition was prescribed by Nitsche’s method. In

addition, the face-oriented ghost-penalty method was applied in the space-time XFEM for

mitigating the ill-conditioning problem due to small intersected space-time elements.

The proposed space-time XFEM was studied with an elasto-dynamic problem, which

assumed a spatially two-dimensional two-phase problem using the finite strain theory and
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the hyperelastic material. The comparison of four methods (spatial FEM spatial XFEM,

space-time FEM and space-time XFEM) was performed. It was confirmed that results

of the space-time XFEM and results of the space-time standard FEM (no interface) were

identical. The implementation of Nitsche’s method for the space-time interface condition was

verified. A faster convergence of L2 errors was achieved using the space-time FEM/XFEM

when compared to the spatial FEM/XFEM. This was because the space-time elements have

internal temporal integration points and the effective time increment was smaller than the

spatial FEM/XFEM.

The space-time XFEM was also applied to spatially two-dimensional transient fluid prob-

lems. The incompressible Navier-Stokes fluid was assumed and both fixed and moving in-

terface conditions were computed. As a fixed interface problem, the well-known DFG 2D-3

benchmark problem was studied using both the spatial XFEM and the space-time XFEM.

While the numerical accuracy of physical quantities that had a steady-state like behavior was

quite similar in both method, the space-time XFEM could evaluate physical quantities that

had a dynamic characteristic more precisely than the spatial XFEM using the same time

increment. As a moving interface problem, the flow around an in-line oscillating cylinder was

studied. The divergence of numerical solution was avoided successfully by the face-oriented

ghost-penalty stabilization and it was confirmed that the face-oriented ghost-penalty method

was effective to stabilize the numerical computations, especially for moving interface prob-

lems. The space-time XFEM overcomes numerical errors due to moving interfaces without

any additional treatment such as the ghost-fluid method. Hence, the space-time XFEM pre-

dicted the smooth evolution of the in-line force similar to previous works (experiment and

results with body-fitted fixed interface problem) using a moving interface problem.

Through these numerical examples, the space-time XFEM has great advantage in terms of

stability, accuracy and flexibility for problems with moving interfaces. The space-time XFEM

is applicable to complex moving interface problems, such as immiscible multiphase fluid
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flow, non-ALE fluid-structure interaction and acoustic analysis around moving structures.

The proposed elementwise temporal layer approach can be performed from one to three

dimensional problems by using conventional settings of volume integration points of the

XFEM. As this thesis focused on spatially two-dimensional problems, the proposed method

needs to be studied using spatially three-dimensional problems in the future.
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Fluid-Structure Interaction

4.1 Outline

Transient problems with moving interfaces can be computed by the proposed space-

time XFEM with increase accuracy and stability, compared to the XFEM approaches using

time stepping schemes (Chapter 3). Robust and stable mathematical treatment for moving

interfaces enhances the flexibility of the computational method for fluid-structure interaction

(FSI) problems. In this thesis, non-standard FSI methods (non-ALE methods) with moving

interfaces are studied, focusing on FSI-contact problems which are difficult to solve by the

ALE-FSI. This chapter presents a classification of the numerical methods for FSI problems.

More flexible FSI methods than the conventional ALE-FSI method are proposed for multi-

physics FSI problems including large deformation and contact.

4.2 Classification of Numerical Methods for FSI

FSI is widely found in the physical world. The physical aspect of FSI is that fluid forces

act on a solid and the deformation of the solid reaction affects the fluid flow. Applications

of FSI models are widely considered for the design of industrial products, such as tires,

airbags, aircraft, trains, vehicles, and biomedical problems such as interactions between

organs and blood fluids. From a computational mechanics, there are some combinations of

computational methods to solve these problems. Computational FSI methods are categorized

by the following four factors; physical description, interface, solver and coupling in Figure

4.1.
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Figure 4.1: Category about numerical methods for FSI

4.3 Solution Method and Coupling

This section focuses on solution methods and couplings described in Figure 4.1. In FSI

analysis, how to couple multi-physics phenomena is an essential key for the computation

of FSI. In this research, the monolithic method is always used. The monolithic method

is the strictest FSI solution method, which couples multi-physics phenomena at each time

step. Considering FSI between phases a and b, the physical response in both phases at the

next time step is computed by the physical response at previous time step and also current

physical quantities mutually. The diagram of this solution method is shown in Figure 4.2.

Blue and red arrows represent FSI. Blue arrows represent contribution from the physical

response at the previous time step tn. A red arrow means that an+1 and bn+1 are computed

simultaneously. This method is also called the strong coupling method and forms the basis for

the fully-implicit residual and Jacobian. This method has the ability to treat FSI problems

with large nonlinearity.

4.4 Physical Description and Treatment of Interface

Important characteristics to differentiate FSI methods are the physical description and

treatment of interface described in Figure 4.1. First, focusing on the physical description.

The Lagrangian description is a natural description of solids and also called the material
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Figure 4.2: Monolithic method
(Strong Coupling)

• Monolithic Method

Residual

Ra = Ra(an+1, bn+1, an, bn) (4.1)

Rb = Rb(bn+1, an+1, bn, an) (4.2)

Jacobian

Ja = Ja(an+1, bn+1, an, bn) (4.3)

Jb = Jb(bn+1, an+1, bn, an) (4.4)

description. Physical quantities are defined at material points and thus, deformable meshes

are usually used in this case. On the other hand, the Eulerian description is a natural

description of fluids and also called as the field description. As there is no material point

in the Eulerian description, physical quantities are defined in a fixed background mesh.

Background meshes do not deform and keep their initial shape. For numerically solving

FSI problems, the choice of the physical description of the solid and fluid phases has great

impact on the numerical implementation and the flexibility such as the treatment of large

deformation and contact.

The treatment of the interface is related to the physical description. When the Lagrangian

description is applied, one can track the explicit interface defined by the edge of deformable

meshes. Therefore, the interface tracking method can be used for the Lagrangian description.

In contrast, when the Eulerian description is applied, the immersed boundary modeling is

necessary to capture interfaces. The first attempt of the immersed boundary method was

the volume of fluid method (VOF). The VOF defines interfaces by referencing the volume

fraction of the fluid and is frequently used for FSI analysis. But there is a tendency that the

interface fades due to the intermediate volume fraction. This drawback is fatal for complex

interface geometries. The level set method does not suffer from this issue. The immersed

interface is directly treated by an iso-contour line of the level set function.
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Based on the physical description and the treatment of the interface, there are some

representative methods for FSI. The most widely used and traditional way is FSI based on

the arbitrary Lagrangian-Eulerian (ALE) formulation (Belytschko et al. [58], Huerta et al.

[59, 60], Nitikitpaiboon and Bathe [61, 62], Bathe et al. [63]). This approach is called the

ALE-FSI method in this thesis. In the ALE-FSI method, the solid domain is defined by

deformable mesh based on the Lagrangian description. The fluid domain is also defined by

deformable mesh to follow the deformation of the solid like a Lagrangian fashion, but the

deformation of fluid mesh is driven by the fictitious velocity. This treatment is called the

ALE formulation. FSI interfaces are explicitly defined by deformable meshes in this case.

The left column of Figure 4.3 shows an image of mesh deformation in the ALE-FSI method.

The drawback of the ALE-FSI method is the computational limit due to the mesh defor-

mation of the fluid domain. In the ALE-FSI method, the fluid ALE mesh around the solid

domain must follow the deformation of the solid. It is difficult to preserve the topology of the

fluid ALE mesh when large deformation of the solid occurs and then, the computation fails.

Figure 4.4 shows one example of the breakdown of ALE meshes due to large deformation

of the solid. The contact is also related to this drawback. Considering a FSI system where

a solid ΩS is initially immersed in a fluid phase ΩF; see Figure 4.5 on the left, When the

solid contacts on the ground, the fluid mesh at the contact region should be annihilated.

Although the ALE-FSI method can approximate this contact phenomenon with thin mesh,

this technique does not allow for topological changes of the fluid mesh and becomes unsta-

ble and ill-conditioned. Therefore, it is difficult to handle contact phenomenon using the

ALE-FSI method.

The full-Eulerian FSI method (Frei and Richter et al. [64, 65], Richter [66], Kamrin et al.

[67, 68]), recently enjoys increasing attention. This method applies the Eulerian description

for both the solid and fluid phases, and the interface capturing method such as the level

set function method is used. Fixed background meshes are used for both the solid and fluid
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Figure 4.3: Image of mesh for FSI

Figure 4.4: Drawback of ALE-FSI 1
(Breakdown of fluid mesh)

Figure 4.5: Drawback of ALE-FSI 2
(Annihilation of fluid mesh due to contact)



www.manaraa.com

70

phases. The right column of Figure 4.3 shows an image of mesh in the full-Eulerian FSI

method. As the background meshes do not deform, larger deformation can be computed

than with the ALE-FSI method. In addition, contact can be simulated by the full-Eulerian

FSI method because it allows for the topological changes of the fluid phase. One difficulty of

this method is a stability issue due to the treatment of the solid phase based on the Eulerian

description. The momentum equation of the solid phase includes the convection of material

points based on the Eulerian description and thus, the stabilization for the convection term

is needed in the solid phase like the fluid phase. Another difficulty is the representation

of the FSI interfaces. Using the level set function as an interface capturing method, the

interfaces are evolved by the Hamilton-Jacobi equation of the level set function and thus, a

smaller time increment is always needed to capture reasonable interfaces.

Another way to compute FSI uses a mixed formulation of the Lagrangian and Eulerian

description. Mayer, Wall, et al. [69, 70] proposed the XFEM based fixed grid approach using

the ghost-fluid method to handle FSI and contact simultaneously. Miller et al. [91] proposed

the oversetgrid method which is the combination of ALE-FSI method and Eulerian fluid

analysis. In this thesis, the Lagrangian-immersed FSI method is proposed. The Lagrangian-

immersed FSI uses the Lagrangian description for solids and the Eulerian description for

fluids respectively. Solid bodies defined by the Lagrangian description are immersed within

the Eulerian background meshes. The physical description changes across the interface

between the solid and the fluid. This main concept is identical to [69, 70]. The main

advantage of this method is that natural physical descriptions are used for both the solid

and fluid phases. Interfaces in the fluid system are captured by the deformed interfaces of the

solid system. In this case, the deformation of a solid body is trackable due to its deformable

meshes based on the Lagrangian description. Therefore, tracking deformation is much easier

than the Full-Eulerian FSI method. As solid bodies are completely disconnected from the

fluid background mesh, large deformation and contact can be simulated without considering
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the breakdown of the fluid ALE mesh in the ALE-FSI method. The challenging point of

the Lagrangian-immersed FSI method is the treatment of FSI between the two different

physical descriptions. The FSI computation in the Lagrangian-immersed FSI is performed

on non-matching interface pairs of the solid and fluid systems.

Table 4.1 summaries computational methods for FSI considering physical description.

The full-Eulerian FSI method and the Lagrangian-immersed FSI method are discussed in

Chapters 5 and 6, respectively.

Table 4.1: Computational methods for FSI
ALE-FSI Full-Eulerian FSI Lagrangian-Immersed FSI

Solid Lagrangian Eulerian Lagrangian
Fluid ALE Eulerian Eulerian
Interface interface tracking interface capturing solid=interface tracking

fluid=interface capturing
Challenging large deformation treatment of FSI on non-matching
Points and contact Eulerian solid interface pair
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Full-Eulerian FSI Method using XFEM

5.1 Outline

This chapter focuses on the full-Eulerian FSI method using the XFEM and the time

stepping scheme, as a non-standard FSI method for complex FSI-contact problems. There

are two physical descriptions for the continuum body. One is the Lagrangian description,

and the other is the Eulerian description. Focusing on the Eulerian description, there is no

material point and physical quantities are observed on the fixed background points. This

formulation bypasses the issues and limitations of the ALE-FSI formulation. As the solid

phase is also represented in the fixed meshes, simultaneous treatment of both FSI and contact

is possible. This chapter focuses on the FSI based on the Eulerian description, which is called

as the full-Eulerian FSI method.

The key challenge of the full-Eulerian FSI method is the treatment of the solid phase

based on the Eulerian description. There are several ways to model the deformation of a

solid object based on the Eulerian description. For examples, Okazawa et al. [92] performed

the Eulerian solid analysis based on the propagation of the deformation gradient F . Based

on this research, displacement ui is not defined and it is hard to reproduce ui from F . On

the other hand, the research of Kamrin et al. [93, 67, 68] and Levin et al. [94, 95] is based

on the advection of the material coordinate (initial configuration) Xi, which is called as the

reference map. This method can compute the displacement as ui = Xi − xi. Considering

the actual product design, the displacement is one of important quantities of structures and

also important for numerical applications such as the optimization. Therefore, this thesis

follows the work of [93, 67, 68, 94, 95].
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Sections 5.2 and 5.3 discuss the general theory related to the solid phase. In Section

5.4, the Eulerian solid analysis using the standard FEM is summarized. Sections 5.5 - 5.7

discusses the theory, numerical implementation and numerical examples of the Eulerian solid

analysis using the XFEM with a standard time stepping scheme. Sections 5.8 and 5.9 provide

the theory and numerical examples of the full-Eulerian FSI method using the XFEM and

the time stepping scheme. Finally, Section 5.10 summarizes the findings for the full-Eulerian

FSI method using the XFEM.

5.2 Mechanical Theory of Solids based on Eulerian Description

As the full-Eulerian FSI applies the Eulerian description to both the solid and fluid

phases, it is necessary to describe the response of the solid phase by the Eulerian description.

The treatment of the Eulerian description is the conventional way for the fluid phase. On the

other hand, the treatment of solid phase based on the Eulerian description is not natural and

thus, it is the challenging point of the full-Eulerian FSI method. This section summarizes

the mechanical theory of elastic solids based on the Eulerian description.

Considering the conservation of momentum of a continuum body based on the Eulerian

description, the Cauchy momentum equation using material derivative is:

ρ
Dvi
Dt

= ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

=
∂σij
∂xj

+ ρbi , (5.1)

where vi denotes the solid velocity, ρ the denotes solid density, bi denotes the body force

and σij denotes the Cauchy stress tensor. If the material is compressible, σij is a function

of just the displacements u. If the material is incompressible, σij is a function of u and the

hydrostatic pressure p; σij(u, p) = −pδij + σ̄ij(u), where σ̄ij is a deviatoric stress tensor.

Considering a material point of the Lagrange description with Xi being its spatial coordi-

nates in the initial configuration, the time derivative of Xi is zero based on the Lagrangian
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description:

DXi

Dt
=
dXi

dt
= 0 (Lagrangian description) , (5.2)

where D ·
Dt

denotes a total derivative and d·
dt

denotes a local time derivative. Using the Eulerian

description, a total derivative is interpreted by a material derivative that considers the

advection of particles of a continuum body. Therefore, (5.2) is rewritten as follows:

DXi

Dt
=
∂Xi

∂t
+ vj

∂Xi

∂xj
= 0 (Eulerian description) . (5.3)

The displacements at the fixed background points x are computed as follows:

ui(x, t) = xi −Xi(x, t) . (5.4)

Kamrin et al. [93, 67, 68] and Levin et al. [94, 95] call Xi a reference map and use (5.3) and

(5.4). From the displacements u, one can compute strain measures such as the infinitesimal

strain εij(u) and the inverse of the deformation gradients F−1
ij (u). As the displacements

are defined in this method, conventional post processing (stress evaluation) of the standard

FEM can be used:

Infinitesimal strain: εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (5.5)

Finite strain: F−1
ij (u) =

∂Xi

∂xj
=
∂(xi − ui)

∂xj
= δij −

∂ui
∂xi

. (5.6)

However, Xi is not necessary because all strain measures can be computed by the displace-

ment u. Mathematically, reference maps X are the linear combinations of displacements

u and current coordinates x defined on the fixed background meshes like (5.4). As x is

constant, X is computed from u. X contains more excessive information than u. Consider

the advection of 1D rigid body with a constant advective velocity along x direction; vx, the

advection of Xx (5.3) should keep the triangle shape with slope 1 because of Xx = x at t = 0.

Differential equations which have odd spatial derivatives are numerically unstable because

the direction of the propagation is not symmetric, and stabilization methods such as the
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SUPG (stream-upwind/Petrov-Galerkin) method is needed to solve (5.3). Using stabiliza-

tion methods, numerical divergence is suppressed but the dissipation of advected properties

due to these stabilization methods cannot be avoided. The advection ofXx using appropriate

stabilization method is illustrated in Figure 5.1. Dissipation due to the stabilization method

generally occurs on the trailing edge of the wave. As time goes on (from blue to red), a

sharp edge in the initial configuration (blue line) becomes round due to the dissipation due

to stabilization methods.

Figure 5.1: Image of 1D advection of reference map Xx using stabilization method

From the fact that the dissipation occurred at the trailing edges of waves, numerical dis-

sipation is suppressed when there is no trailing edge in the initial configuration. Considering

the 1D advection of a rigid body (∂ux

∂x
= 0), the advection of displacement ux is more stable

than (5.3). Therefore, the advection of the displacements is used instead of (5.3) in this

research:

∂ui
∂t

+ vj
∂ui
∂xj

= vi . (5.7)

In the Eulerian FEM, interfaces of solid are not defined explicitly and an interface cap-

turing method is essential to define interfaces of solid phase. The level set function ϕ is

used as an interface capturing method in this research. The time evolution of the level set
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function is also defined by an advection equation as follows:

∂ϕ

∂t
+ vj

∂ϕ

∂xj
= 0 . (5.8)

5.3 Conservative Level Set Function (CLSF)

The definition of the solid interface by the iso-contour line of the level set function ϕ is the

key factor of the Eulerian solid analysis. However, when the level set function is propagated

by (5.8) using a stabilization method like the SUPG, leaking of the volume of the level set

function frequently occurs. It is hard to conserve the total volume of the level set function.

To propagate the level set function accurately, the conservative level set function (CLSF)

method (Olsson et al. [96, 97]) is an efficient way. This CLSF method can maintain the

conservation of the volume of the level set function by introducing a reinitialization step. A

point to be aware of using the CLSF is that the form of the level set function is limited to a

Heaviside-like step function. The following equation is an example of a Heaviside-like level

set function to represent a circular structure with the radius r:

ϕ(x) =

[
1 + exp

(
|x− xc| − r

εϕ

)]−1

(∵ εϕ = h1−dϕ) . (5.9)

The value of ϕ is restricted between 0 and 1. εϕ is the characteristic length with εϕ > 0 and

defined by the spatial element size h and a coefficient dϕ; 0 ≤ dϕ < 1. When dϕ is set to

a smaller value, a sharper distribution is obtained. On the other hand, when dϕ is set to

a larger value, the slope of the level set function becomes small. Generally, functions that

change drastically tend to cause the instability in numerical computations, especially due to

the calculation of their derivatives. Therefore, dϕ is set as 0.1 in this research. This CLSF

method consists of the following three steps:

Step 1: Advection
∂ϕ

∂t
+ vj

∂ϕ

∂xj
= 0 , (5.10)

Step 2: Normal Direction n̂i = ∥∇ϕ∥−1 ∂ϕ

∂xi
, (5.11)
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Step 3: Reinitialization
∂ϕ

∂t
+

1

µϕ

∂

∂xj

[
ϕ(1− ϕ)n̂j

]
=
εϕ
µϕ

∂

∂xj

[(
∂ϕ

∂xk
n̂k

)
n̂j

]
. (5.12)

(5.10) is the basic form of the Hamilton-Jacobi equation. (5.11) and (5.12) are additional

treatments by the CLSF. (5.11) is to compute the normal direction based on the result of

the advection (5.10). (5.12) is the implicit reinitialization step, making ϕ smoother. µϕ is

a fictitious mass coefficient and set as 10 in this research. The values of ϕ are restricted

between 0 and 1 due to the second term in the left-hand side.

5.4 Preliminary Study for Eulerian Solid Analysis

This section shows a numerical example of the Eulerian approaches such as the CLSF

method and the reference map using the finite element (FEM), as the preliminary study of

the Eulerian solid analysis using the XFEM. In this section, the propagation of the level set

function around a 1D beam is computed. The beam is modeled by 2-node beam elements

(BEAM2). Although the deformation of a continuum body is calculated based on a geomet-

rically 1D beam model, the reference map X, the level set function ϕ, strains and stresses

are calculated in 2D in this case.

5.4.1 2-Node Beam Element (BEAM2)

This section summarizes the isoparametric representation for a BEAM2 element. The

following discussion is common in both the Lagrangian approach and the Eulerian approach.

The degrees of freedom of BEAM2 are two displacements in y direction and their first

derivative with respect to x. A solution vector for the element e is defined as follows:

ue ≡
(
uy1 θ1 uy2 θ2

)T

, (5.13)



www.manaraa.com

78

where θ denotes a derivative of the displacement uy with respect to x: θ = ∂uy

∂x
. The shape

functions for a BEAM2 element are the Hermitian cubic shape functions:

Nd1 ≡
1

4
(1− ξ)2(2 + ξ) , (5.14)

Nθ1 ≡
1

8
l(1− ξ)2(1 + ξ) , (5.15)

Nd2 ≡
1

4
(1 + ξ)2(2− ξ) , (5.16)

Nθ2 ≡ −
1

8
l(1 + ξ)2(1− ξ) . (5.17)

The isoparametric coordinate ξ is defined as:

ξ ≡ 2

l
x− 1 . (5.18)

The Jacobian for the isoparametric transformation is as follows:

J ≡ dx

dξ
=
l

2
. (5.19)

The derivatives of shape functions with respect to the Descartes coordinates are calculated

as follows using the Jacobian (5.19):

dNi

dx
= J−1dNi

dξ
=

2

l

dNi

dξ
(i = d1, θ1, d2, θ2) . (5.20)

These derivatives are summarized as follows:

First Derivatives w.r.t x

dNd1

dx
= − 3

2l
(1− ξ2) , (5.21)

dNθ1

dx
= −1

4
(1− ξ)(1 + 3ξ) , (5.22)

dNd2

dx
=

3

2l
(1− ξ2) , (5.23)

dNθ2

dx
= −1

4
(1 + ξ)(1− 3ξ) , (5.24)

Second Derivatives w.r.t. x

d2Nd1

dx2
=

6

l2
ξ , (5.25)

d2Nθ1

dx2
=

1

l
(3ξ − 1) , (5.26)

d2Nd2

dx2
= − 6

l2
ξ , (5.27)

d2Nθ2

dx2
=

1

l
(3ξ + 1) . (5.28)



www.manaraa.com

79

In the following discussion, row vectors of shape functions are used for the weak form:

N ≡
(
Nd1 Nθ1 Nd2 Nθ2

)
, (5.29)

Nx ≡
(

dNd1

dx
dNθ1

dx
dNd2

dx
dNθ2

dx

)
, (5.30)

B ≡
(

d2Nd1

dx2
d2Nθ1

dx2
d2Nd2

dx2
d2Nθ2

dx2

)
. (5.31)

5.4.2 Static Beam Analysis based on Lagrangian Description

Before discussing the dynamic analysis based on the Eulerian description, this section

summarizes the static analysis based on the Lagrangian description. This section assumes

infinitesimal strains based on Felippa [98] and Kwon [99].

The static analysis is to calculate the balance of the force and moment, adn the corre-

sponding displacements. The total potential energy of the element e has the quadratic form

in terms of the nodal displacements:

Πe ≡
1

2
uT

eKeue − uT
e fe . (5.32)

In (5.32), Ke and fe are the local stiffness matrix and the local nodal force vector defined as

follows:

Ke =

∫ l

0

dx BTB =

∫ 1

−1

dξ
EIl

2
BTB , (5.33)

fe =

∫ l

0

dx qNT =

∫ 1

−1

dξ
ql

2
NT , (5.34)

where E is the Young’s modulus, I is the moment of inertia and q is the load. These three

variables are functions of x in general. If the bending rigidity EI and the load q have an
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uniform distribution, (5.33) and (5.34) can be calculated analytically as follows:

Ke =
EIl

2

∫ 1

−1

dξBTB =
EI

l3



12 6l −12 6l

4l2 −6l 2l2

12 −6l

Symm 4l2


, (5.35)

fe =
ql

2

∫ 1

−1

dξNT =
ql

2



1

l/6

1

l/6


. (5.36)

Assuming a deflection of the beam due to the body force with the constant bending rigidity,

(5.35) and (5.36) can be used because q = −g, which has a constant distribution everywhere.

Then, assembling Ke and fe of all elements in the system, displacements and rotations

(derivative of displacements) of each node are determined by solving the balance of forces

and moments. K and f are the total stiffness matrix and the total force vector. If the beam

has N nodes, K is a 2N × 2N matrix and following f and u are 2N dimension vectors:

Ku = f (5.37)

fT = (fy1, fθ1, · · · , fyN , fθN) (5.38)

uT = (uy1, θ1, · · · , uyN , θN) (5.39)

By solving (5.37), the stationary solution of the beam deflection is determined.

5.4.3 Dynamic Beam Analysis based on Lagrangian description

The stationary solution of the deflection of a beam can be calculated based on the method

outlined above. But the method of the static analysis cannot be applied to the finite element

method based on the Eulerian description (Eulerian FEM) because the Eulerian FEM is
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inherently a dynamic analysis. This section summarizes the method of the dynamic analysis

for BEAM2 elements based on the Lagrangian description.

The governing equation of the dynamic BEAM2 analysis using the FEM is as follows:

M
d2u

dt2
+ C

du

dt
+Ku = f , (5.40)

uT ≡
(
uy1 θ1 · · · uyN θN

)
, (5.41)

whereM , C, K and f are the mass matrix, the damping matrix, the stiffness matrix and the

force vector respectively. They are assembled by corresponding local matrices Me, Ce and

Ke, and local force vector fe defined as follows based on the continuous Galerkin method:

Local mass matrix: Me =

∫ l

0

dx mNTN =

∫ 1

−1

dξ
ml

2
NTN , (5.42)

Local damping matrix: Ce =

∫ l

0

dx cNTN =

∫ 1

−1

dξ
cl

2
NTN , (5.43)

Local stiffness matrix: Ke =

∫ l

0

dx BTB =

∫ 1

−1

dξ
EIl

2
BTB , (5.44)

Local force vector: fe =

∫ l

0

dx qNT =

∫ 1

−1

dξ
ql

2
NT . (5.45)

If the mass and the damping coefficient are constant, the above matrices and vector can be

calculated analytically. As (5.44) and (5.45) are the same as (5.33) and (5.34) in the static

analysis, the results of analytical integration are identical to (5.35) and (5.36). Me and Ce

are defined as follows:

Me =
ml

2

∫ 1

−1

dξNTN =
ρAl

420



156 22l 54 13l

4l2 13l −3l2

156 −22l

Symm 4l2


, (5.46)
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Ce =
cl

2

∫ 1

−1

dξNTN =
cl

420



156 22l 54 13l

4l2 13l −3l2

156 −22l

Symm 4l2


. (5.47)

The central differencing method is used for the time integration of (5.40):

Step 1: a(n) ≡ d2u

dt2

(n)

=M−1(f (n) − Cv(n) −Ku(n)) , (5.48)

Step 2: v(n+1/2) ≡ du

dt

(n)

= v(n−1/2) +∆ta(n) , (5.49)

Step 3: u(n+1) = u(n) +∆tv(n+1/2) . (5.50)

where a, v and u denote accelerations, velocities and displacements respectively. The upper

subscript (n) denotes the time step. First, the acceleration at the current time step n is

calculated and then, the intermediate velocity at the time step n + 1/2 is also computed.

Finally, the displacement at the time step n + 1 is updated. Because the damping matrix

exists in this system, the dissipation of the energy occurs. Finally, the deflection of the beam

becomes stationary due to this dissipation of the energy. Therefore, the stationary solution

of the dynamic analysis is obtained, which is the same as the result of the static analysis

mentioned in the previous section.

5.4.4 Dynamic Beam Analysis based on Eulerian Description

The dynamic beam analysis based on the Eulerian description is an extension of the

one based on the Lagrangian description. Although the kinematic model is identical to the

Lagrangian approach, the deformation of the solid phase is represented by the CLSF method

in the Eulerian approach. It should be noted that the Eulerian approaches are used only

in the post-processing and the Eulerian approaches do not have an effect on the structural

analysis.

The advection velocity is calculated by the beam model outlined above and then, the
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Eulerian fields such as the level set function and the reference map, are calculated based on

the advection equation using the preceding advective velocity. The computation of the level

set function and the reference map is performed by 2D elements. In this case, QUAD4 is

used for the 2D spatial discretization. The procedure of this approach is as follows:

Procedure of the dynamic beam analysis based on the Eulerian description

Step 1: Calculate (5.48) - (5.50) ⇒ Set the advective velocity v̄y

Step 2: Propagate the level set function
∂ϕ

∂t
+ v̄j

∂ϕ

∂xj
= 0 (5.51)

Step 3: Propagate the reference map
∂Xi

∂t
+ v̄j

∂Xi

∂xj
= 0 (5.52)

Step 4: Propagate the velocity field
∂vi
∂t

+ v̄j
∂vi
∂xj

= 0 (5.53)

Step 5: Calculate the displacement u(n+1)
y (x) = y −X(n+1)

y (x) (5.54)

Step 6: Calculate the curvature κ =
d2uy
dx2

= Bue (5.55)

ue =

(
uy1 θ1 uy2 θ2

)
(5.56)

Step 7: Calculate the local strain ē(n+1) = −(X(N+1)
y − y0)κ (5.57)

Step 8: Calculate the local stress σ̄(n+1) = Eē (5.58)

Step 9: Rotate the local strain and stress into the global coordinate system

⇒ Go back to Step 1

5.4.5 Numerical Example of 2D Beam Analysis

This section compares the dynamic beam problems using the FEM based on both the

Lagrangian and the Eulerian description. The benchmark problem is the deflection of a

cantilever beam due to the body force. The initial configuration of this cantilever beam is

listed in Table 5.1 and shown in Figure 5.2.



www.manaraa.com

84

Figure 5.2: Initial configuration of beam

Table 5.1: Setting of cantilever beam
Parameter Symbol Value

length L 5
height h 1.2
cross section A 1
density ρ 1
bending rigidity EI 100
damping coefficient c 0.6
time increment ∆t 10−4

spatial increments ∆x,∆y 0.2

Figure 5.3 shows the result of the dynamic beam analysis based on the Lagrangian de-

scription. The blue mesh shows the deformed Lagrangian mesh and the red line indicates

the neutral axis of the analytical solution. The neutral axis of the Lagrangian approach

agrees well the one of the analytical solution. Figure 5.4 shows the result of the dynamic

beam analysis based on the Eulerian description. The blue shading represents the value of

the level set function and the red line is the neutral surface of the analytical solution same

as Figure 5.3. The deflection of a beam is identical to the result of the Lagrangian approach

because the same BEAM2 model is used in both approaches. The solid phase in the Eulerian

approach is appropriately represented by the level set function, comparing with Figure 5.3.

The Eulerian approach predicts a similar result of the Lagrangian approach. The drawback

of the Eulerian approach using the XFEM jagged interface like Figure 5.4. To represent

accurate interfaces, the XFEM is more suitable for the Eulerian analysis.
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Figure 5.3: Result of Lagrangian FEM
(blue: Lagrangian mesh)

Figure 5.4: Result of Eulerian FEM
(blue: level set function)

5.5 Numerical Implementation of Eulerian Solid Analysis using XFEM

To simulate accurately interfaces of an Eulerian solid, the XFEM is more suitable than the

FEM. An interface can be represented by intersected elements of the XFEM more accurately.

To apply the XFEM to the Eulerian solid analysis, some special techniques are necessary for

the treatment of the void phase and the stabilization of the numerical formulation. Three

techniques are explained in this section.

5.5.1 Helmholtz smoothing Method

The momentum equation of the solid (5.1) is computed in the solid phase ΩS. On the

other hand, the propagation of the level set function should be performed in the entire

computational domain Ω including the void phase ΩV. Therefore, defining pseudo velocity

fields in the void phase ΩV is essential for the Eulerian solid analysis. In this research, the

Helmholtz smoothing method is used to compute velocity fields in ΩV. This smoothing is
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based on the Helmholtz equation defined as follows:

−∆av + k2av = 0 in ΩV, (5.59)

as = av on ΓSV (5.60)

where av and as are some scalar fields in ΩV and ΩS respectively. (5.60) is a boundary

condition on the solid-void interface ΓSV. For the velocity fields, a = vi. k is a coefficient

of the production term and k2 is set to 1 in this section. To use this Helmholtz smoothing

method, velocity fields in the void ΩV (outside of the solid structure) connects smoothly to

velocity fields in ΩS and the resulting pseudo velocity field decreases monotonically in void

as the distance to the solid domain increases.

5.5.2 Nitsche’s Method

This section describes Nitsche’s method to enforce the C0 continuities on the interfaces.

The original objective of the XFEM is to capture discontinuities on the interfaces, focusing

on the crack propagation. On the other hand, considering the Eulerian solid analysis, the

XFEM is used to represent solid interfaces, not to introduce the discontinuities in state

variables. While displacements are computed only in the solid phase ΩS, velocities are

computed in both the solid and void phase by using Helmholtz smoothing method. Therefore,

the straightforward application of the XFEM based on a Heaviside enrichment strategy to

the Eulerian solid may introduce introduces a discontinuity in the velocity fields vi on the

solid-void interface.

To avoid the discontinuity of the velocity fields on the solid-void interface ΓSV, Nitsche’s

method is applied to velocities vi in this research. Considering a generic two-phase problem

as shown Figure 5.5, the following continuity needs to be enforced:

[[vi]] = v1i − v2i = 0 on Γ12 , (5.61)

where v1i denotes the velocity in the phase 1: Ω1, v
2
i denotes the velocity in the phase 2: Ω2,
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and [[·]] is the jump operator that computes the difference of the physical quantities on Γ12.

The image of an intersected element is shown in Figure 5.5. For the pure solid analysis, one

of these phases is a solid phase and the other is a void phase, and Γ12 is ΓSV.

Figure 5.5: Intersected element

Nitsche’s method (5.61) is applied to the momentum equation by introducing a penalty

factor to enforce weakly that velocity fields vi satisfy (5.61). Assuming Ω2 is a solid phase,

which is filled by a continuum body, and Ω1 is a void phase. The strong forms are as follows:

−∆vi + vi = 0 in Ω1 (Void Phase) , (5.62)

∂vi
∂t

+ vj
∂vi
∂xj

= ρ−1∂σij
∂xj

+ bi in Ω2 (Solid Phase) , (5.63)

[[vi]] = v1i − v2i = 0 on Γ12 (Solid-Void Interface) . (5.64)

Corresponding weak form of (5.62) - (5.64) is summarized as follows based on the formulation

of the symmetric Nitsche’s method, assuming compressible material as a simple case. The

derivation of (5.65) is summarized in Appendix B:

(
∇δv, ρ∇v

)
1
+
(
δv, ρv

)
1
+

(
δv, ρ

∂v

∂t
+ ρv · ∇v − ρb

)
2

+
(
∇δv, σ

)
2
+

⟨
δv, ρ∇v · n̂1→2

⟩
Γ12

+

⟨
{δσ} · n̂1→2, [[u]]

⟩
Γ12

+

⟨
[[δv]], {σ} · n̂1→2

⟩
Γ12

+ ηN
⟨
δv1, [[v]]

⟩
Γ12

= 0 , (5.65)
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where (·)α and ⟨·⟩Γβ
denote the volume integral and the boundary integral:

Volume Integral: (a, b)α ≡
∫
Ωα

dΩ aTb , (5.66)

Boundary Integral: ⟨a, b⟩Γβ
≡

∫
Γβ

dΓ aTb . (5.67)

Red terms in (5.65) denote terms related to Nitsche’s method. ηN is the penalty factor for

Nitsche’s method. The test function for the last term at the left-hand side (the Nitsche’s

penalty term) is the test function of a void phase based on the one-sided Nitsche method.

This treatment is because of that the fictitious velocity on the void phase does not affect the

solid velocity. {·} is the averaging operator defined as follows:

{u} ≡ w1u1 + w2u2 (∵ w1 + w2 = 1) , (5.68)

{v} ≡ w1v1 + w2v2 , (5.69)

{δσ} = w1σ(δv1) + w2σ(δv2) . (5.70)

There are several ways to define these weighting factors wi. Here are examples of the

weighting strategies:

Equal Weighting w1 = w2 = 0.5 , (5.71)

Area Weighting w1 =
A1

A1 + A2

, w2 =
A2

A1 + A2

, (5.72)

Modulus Weighting w1 =
E2

E1 + E2

, w2 =
E1

E1 + E2

, (5.73)

Dolbow et.al. [100] w1 =
A1/E1

A1/E1 + A2/E2

, w2 =
A2/E2

A1/E1 + A2/E2

, (5.74)

where Ai and Ei are the area and Young’s modulus of phase i respectively. To satisfy the

traction free boundary condition on Γ12, a weighting strategy which is w1 = 1 and w2 = 0 is

appropriate. Therefore, the modulus weighting (E1 = 0) is the appropriate method for the

Eulerian solid analysis. In addition, this thesis uses the one-sided Nitsche method, i.e. the

test function is constructed by only shape functions in Ω1: N
1, such that the void phase ΩV

does not affect the solution in the solid phase ΩS.
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5.5.3 Face-Oriented Ghost-Penalty Method

The interface of the Eulerian solid is defined by the level set function ϕ on fixed back-

ground meshes. Therefore, intersected elements which have very small area (volume in 3D)

are generally created around the interfaces. If small elements exist, the condition num-

ber of the Jacobian becomes larger and the solution tends to become inaccurate. This

ill-conditioning problem leads to the blow-up of the solution, which is a purely computa-

tional phenomenon, not a physical problem. To avoid this ill-condition of the Jacobian,

the face-oriented ghost-penalty method proposed by Burman [55, 56] is an efficient way to

improve the stability.

Here, 2D Eulerian solid system that contains two phases is assumed: one phase is the

solid phase and the other is the void phase. The face-oriented ghost-penalty method is only

applied on the edges around intersected elements. The face-oriented ghost-penalty method

is applied on the faces of intersectedelements Γgp
12 as shown in 5.6.

Figure 5.6: Boundaries for face-oriented ghost-penalty method

The objective of this method is to reduce the condition number of the Jacobian by

enforcing that the jumps of the flux of solution in both phases are zero. Thus, the following



www.manaraa.com

90

weak form of the face-oriented ghost-penalty method is added to (5.65):

+ηgp
⟨
[[∇δv]] · n̂, [[∇v]] · n̂

⟩
on Γgp

12 , (5.75)

where ηgp is a penalty factor of the face-oriented ghost-penalty method. In the face-oriented

ghost-penalty method, the jump terms are integrated over the entire face, individually for

each phase that is considered. Thus, this method integrates twice over an intersected edge

in a solid-solid problem, using different interpolation functions and state variables.

5.6 Eulerian Solid Analysis using XFEM

Considering the Helmholtz smoothing, Nitsche’s method and the face-oriented ghost-

penalty method, the overall governing equations for the Eulerian solid analysis using XFEM

are summarized as follows. Section 5.6.1 introduces first strong forms and Section 5.6.2

summarizes the corresponding weak form. In this section, the incompressible solid is assumed

as the most complex case.

5.6.1 Strong Form of Eulerian Solid Analysis

The governing equations using velocities as independent state variables are summarized

as follows:

• Velocity

◦Momentum:
∂vi
∂t

+ vj
∂vi
∂xj

+ αvi = ρ−1∂σij(u, p)

∂xj
+ bi in ΩS , (5.76)

◦ Continuity: ∂vi
∂xi

= 0 in ΩS , (5.77)

◦ Helmholtz: ∆vi + vi = 0 in ΩV , (5.78)

◦ Nitsche: [[vi]] = v1i − v2i = 0 on ΓSV , (5.79)

◦Ghost-Penalty:

[[
∂vi
∂xj

]]
n̂j =

(
∂v1i
∂xj
− ∂v2i
∂xj

)
n̂j on Γgp

SV . (5.80)
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In this section, σij denotes the stress tensor, which is a function of u and p. The additional

viscous term αvi is introduced in (5.76) such that the structure converges to a steady-state

solution the equilibrium state and α is set to 1 in this research.

The governing equations for the displacement field and the level set function are summa-

rized as follows.

• Displacement

◦ Advection: ∂ui
∂t

+ vj
∂ui
∂xj
− vi = 0 in ΩS , (5.81)

• Conservative Level Set Function (CLSF)

◦ Advection: ∂ϕ

∂t
+ vj

∂ϕ

∂xj
= 0 in Ω , (5.82)

◦ Normal Vector: n̂i ≡
1

|∇ϕ|
∂ϕ

∂xi
in Ω , (5.83)

◦ Reinitialization: ∂ϕ

∂t
+

1

µϕ

∂

∂xi

[
ϕ(1− ϕ)n̂i

]
=
εϕ
µϕ

∂

∂xi

[
(∇ϕ · n̂)n̂i

]
in Ω , (5.84)

where Ω denotes the entire computational domain as Ω = ΩS ∪ ΩV .

5.6.2 Weak Form of Eulerian Solid Analysis

The corresponding weak form is defined by applying SUPG and PSPG stabilization

methods. Because of the use of the conservative level set function, a staggered approach is

necessary for the Eulerian solid analysis. Therefore, the residual R is divided into following

three steps (R = R1 +R2 +R3). R1 is the standard residual of the Eulerian solid analysis

for the incompressible material. R2 and R3 are the residuals for the reinitialization of the

level set function defined by the conservative level set function method.

Staggered Step 1: Advection R1 = Rv +Ru +R1
ϕ +Rgp (5.85)

Staggered Step 2: Normal Direction R2 = R2
ϕ (5.86)

Staggered Step 3: Reinitialization of ϕ R3 = R3
ϕ (5.87)
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Details of each residual are provided below. The symmetric Nitsche method is applied in

the momentum equation (5.88):

• Velocity

Rv =
(
∇δv, ρ∇v

)
V
+
(
δv, ρv

)
V
+

⟨
δv, ρ∇v · n̂S→V

⟩
ΓSV

+

(
δv, ρ

∂v

∂t
+ ρv · ∇v + αv − ρb

)
S

+
(
∇δv, σ(u, p)

)
S
+
(
δp,∇ · v

)
S

+
∑

ne∈ΩS

(
τSUPGv · ∇δv +

τPSPG
ρ
∇δp, ρ∂v

∂t
+ ρv · ∇v −∇σ(u, p)− ρb

)
S

+

⟨
{δσ} · n̂S→V, [[u]]

⟩
ΓSV

+

⟨
[[δv]], {σ} · n̂S→V

⟩
ΓSV

+ ηN
⟨
δvV, [[v]]

⟩
ΓSV

(5.88)

where {σ} = wSσS(u, p)+wVσV(u, p), {δσ} = wSσS(δv, p)+wVσV(δv, p) and wS+wV = 1.

• Displacement

Ru =

(
δv,

∂u

∂t
+ v · ∇u− v

)
S

+
∑

ne∈ΩS

(
τSUPGv · ∇δu,

∂u

∂t
+ v · ∇u− v

)
S

(5.89)

• Conservative Level Set Function (CLSF)

R1
ϕ =

(
δϕ,

∂ϕ

∂t
+ v · ∇ϕ

)
S+V

+
∑

ne∈ΩS+V

(
τSUPGv · ∇δϕ,

∂ϕ

∂t
+ v · ∇ϕ

)
S+V

(5.90)

R2
ϕ =

(
δn̂, |∇ϕ|n̂−∇ϕ

)
S+V

(5.91)

R3
ϕ =

(
δϕ,

∂ϕ

∂t
+

1

µϕ

∇ ·
[
ϕ(1− ϕ)n̂

]
− εϕ
µϕ

∇ ·
[
(∇ϕ · n̂)n̂

])
S+V

(5.92)

• Face-oriented Ghost-Penalty Method

Rgp =ηgpv

⟨
[[∇δv]] · n̂, [[∇v]] · n̂

⟩
Γgp
SV

+ ηgpp

⟨
[[∇δp]] · n̂, [[∇p]] · n̂

⟩
Γgp
SV

(5.93)
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5.7 Numerical Examples of Eulerian Solid Analysis using XFEM

This section discusses two numerical examples of the two-dimensional Eulerian solid

problems using the XFEM. In these examples, QUAD4 elements are used for the spatial

discretization and the time evolution is calculated by BDF1 (backward Euler method). At

each time step, the nonlinear problem is solved by Newton’s method and the convergence

criteria requires a drop of the norm of the residual of 10−6 relative to the norm of the initial

residual. In each Newton step, the system of linearized equations is solved by GMRES.

5.7.1 Free Falling of Cylinder due to Body Force

The first benchmark problem is a falling circular solid structure due to a body force. In

this example, no boundary condition is imposed. This solid structure is made by an isotropic

linear elastic material and infinitesimal strains are assumed. It should be noted that the small

strain assumption is not applicable to a general problem, but this assumption can be used

for this particular problem because there is no rigid-body rotation. This circular structure

has the initial velocity -0.8m/s in y direction and is accelerated by the body force b. Table

5.2 is the summary of material parameters. Analytical results of velocity and displacement:

v̂i and ûi are as follows:

v̂i(n∆t) = vi0 + bin∆t , (5.94)

ûi(n∆t) = vi0n∆t+
bi
2
n2
(
∆t

)2
. (5.95)

Table 5.2: Settings of free falling circular solid
Parameter Symbol Value

initial velocity v0 (0,−0.8)m/s
body force b (0,−3)m/s2

time increment ∆t 0.003s
modulus E 0.1MPa
Poisson’s ratio ν 0.3
density ρ 1000kg/m3
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Figure 5.7 shows the propagation of the level set function ϕ, the solid phase and the von

Mises stress σVM (Cauchy stress). These results show that the circular shape is preserved at

any time step while the solid structure falls due to the body force. In addition, the von Mises

stress is almost zero, as it should be since the body undergoes just a rigid body motion.

Figures 5.8 and 5.9 show the comparisons between the numerical results and the analytical

solutions (5.94) and (5.95). At the center of this circle, the results of the velocity and

displacement in y direction are identical to their analytical solutions (v̂y and ûy). The

free fall of a circular solid was computed correctly using the XFEM based on the Eulerian

description.

Figure 5.7: Free falling circular structure due to body force
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Figure 5.8: History of velocity vy in time

Figure 5.9: History of displacement uy in time

5.7.2 Beam Bending due to Body Force (2D Analysis with BCs)

The second benchmark problem is a solid beam subject to a body force. This benchmark

problem includes Dirichlet boundary conditions. The geometry and material parameters of

the system are given in Figure 5.10 and Table 5.3. There is one solid beam specified as a solid

phase ΩS in Figure 5.10, which is made by the incompressible neo-Hookean material. The

incompressible neo-Hookean material is a simplified model of incompressible Mooney-Rivlin

model which is defined by the hyperelastic function W as follows:

W (Ī1, Ī2) = C10(Ī1 − 3) + C01(Ī2 − 3) , (5.96)

where Īi are the reduced invariants of the left Cauchy-Green tensor B (and also right Cauchy-

Green tensor C) and Ī3 = J = detF = 1 due to the incompressibility. C10 and C01 are
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Figure 5.10: System of bending beam

Table 5.3: Parameters of bending beam
Parameter Symbol Value

material parameter C10 0.0375MPa
density ρ 1000 kg/m3

body force (bx, by) (0,−3)m/s2

time increment ∆t 0.075s
mesh size ∆x,∆y 0.05m
number of mesh ne 280

Assumptions
• finite strains
• plane strain case
• incompressible neo-Hookean material

material parameters of the Mooney-Rivlin model and if C01 = 0, this material is referred

to the incompressible neo-Hookean model. As the Eulerian FEM is based on the current

configuration, the Cauchy stress tensor is an appropriate stress measure. Based on (5.96),

the deviatoric Cauchy stress tensor σ̄ is defined by the derivative of W with respect to the

Euler-Almansi strain tensor e, which is the conjugate strain tensor of σ̄:

σ̄ij = −
2

3
(C10I1 − C01I2)δij + 2C10Bij − 2C01B

−1
ij , (5.97)

where Ii are invariants of B and Īi = Ii because of the incompressible material. In addition,

it is necessary to consider the hydrostatic pressure p as a non-deterministic contribution of

the force due to the incompressibility. Thus, the Cauchy stress tensor σij is defined by p and

σ̄ij:

σij = −pδij + σ̄ij = −pδij −
2

3
(C10I1 − C01I2)δij + 2C10Bij − 2C01B

−1
ij . (5.98)

The root of this solid beam defined by the x-coordinate being less than 0.15m, is fixed

domain by Dirichlet boundary conditions. The undeformed structure of this solid beam is

defined by the following initial level set function ϕ.

ϕs = min(Lx − |x− xc|, Ly − |y − yc|) , (5.99)
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ϕ =
1

2
+

1

2
tanh

(
ϕs

εϕ

)
. (5.100)

Parameters in terms of the initial level set function ϕ are summarized in Table 5.4.

Table 5.4: Parameters about level set function ϕ
Parameter Symbol Value

length in x Lx 0.78m
length in y Ly 0.17m
center in x xc 0m
center in y yc 0.4m
slope parameter of ϕ εϕ 0.5∆x0.9=0.0337
time scaling for reinitialization µϕ 10

The phase outside of the solid beam is defined as a void phase ΩV. The velocity fields in

ΩV are defined by the Helmholtz smoother. The green line in Figure 5.10 shows the interface

between the solid and void phase ΓSV. On ΓSV, Nitsche’s method is applied. In addition,

the face-oriented ghost penalty method is also applied in the vicinity of ΓSV. Coefficients

related to Nitsche’s method and the ghost penalty method are as follows.

Table 5.5: Parameters about boundary integrals
Parameter Symbol Value

penalty factor of Nitsche’s method ηN 20E = 2000MPa
penalty factor of ghost-penalty method ηgp 0.0005∆x = 2.5× 10−5m

Based on the above parameters, this solid beam system is computed up to 0.675s (9 steps)

to reach an equilibrium state. Figure 5.11 shows results of a coarse mesh (∆x = ∆y = 0.05m)

based on the Eulerian XFEM and Lagrangian standard FEM. The reinitialization process

for ϕ was performed at every four time steps for the Eulerian XFEM. In Figure 5.11, the left

three columns are results of the Eulerian XFEM and the right column is the result of the von

Mises stress of the Lagrangian FEM. The left column shows the history of the propagation

of phase. The interface ΓSV is defined by the iso-contour line at ϕ = 0.5 and the phases (left

figures) are defined by its interface. Even if coarse meshes are used, the smooth interface is

obtained by using XFEM. The second column shows the distributions of vy. It is confirmed
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that the equilibrium state is obtained at step 9 because vy converges to almost zero. The

third and fourth columns show the distribution of the von Mises stress σVM using both the

Eulerian and Lagrangian method. The root of the beam has large stresses as expected. It

is confirmed that stress distributions at the steady-state (step 9, t = 0.675s) of both the

Eulerian and Lagrangian method are almost identical.

Finally, the rate of convergence of the proposed Eulerian solid analysis compared against

the results of the standard Lagrangian analysis is studied. Models for this convergence check

are listed in Table 5.6. The finest Lagrangian model (LAG5 in Table 5.6) is used as a

reference model for both the Eulerian and Lagrangian analysis to compute the L2 errors.

The definition of the L2 errors are (5.101) - (5.104). These L2 errors are normalized by the

reference value (denominator):

Table 5.6: Models for convergence check (Eulerian solid analysis)
Method Model Name Number of Node Spatial Discretization

h = ∆x = ∆y (m)

Lagrangian LAG1 153 0.048462
LAG2 338 0.031500
LAG3 561 0.024231
LAG4 1225 0.016154

(reference) LAG5 2145 0.012155
Eulerian EUL1 315 0.05

EUL2 704 0.032693
EUL3 1189 0.025
EUL4 2623 0.016667

Err(v) =

√∫
S
dΩ |v − vref|2∫
S
dΩ |vref|2

, (5.101)

Err(p) =

√∫
S
dΩ (p− pref)2∫
S
dΩ pref 2

, (5.102)

Err(u) =

√∫
S
dΩ |u− uref|2∫
S
dΩ |uref|2

, (5.103)

Err(σVM) =

√∫
S
dΩ (σVM − σref

VM)
2∫

S
dΩ σref 2

VM

. (5.104)
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Figure 5.12 shows the convergence of the L2 errors of main quantities of interest. Blue

markers show the results of the Lagrangian FEM and red markers show the results of the

Eulerian XFEM. The rates of convergence is computed by the least square fitting. As the

finest Lagrangian model is set to a reference model, the rate of convergence of the Lagrangian

models is larger than one of the Eulerian models and they are larger than 1. The convergence

of the Eulerian XFEM is slower, but the L2 errors converge by mesh refinement. These results

suggest that the structural problems using the Eulerian XFEM needs finer meshes than the

Lagrangian FEM to achieve the same accuracy.

Figure 5.11: History of bending beam (phase, vy and σVM)
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Figure 5.12: Convergence of Eulerian solid analysis (Step 9, t = 0.675s)

5.8 Theory of Full-Eulerian FSI Method

This section describes the full-Eulerian FSI method by following building on the Eulerian

solid analysis introduced previously. To explain the general theory of the FSI, first a simple

system as shown in Figure 5.13 is considered. There is a solid phase ΩS surrounded by a fluid

phase ΩF. The outer boundary of the computational domain consists of a solid boundary ΓS

and a fluid boundary ΓF. The interface between ΩS and ΩF is denoted by ΓSF.

Figure 5.13: Simple system for discussion of FSI theory
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5.8.1 Artificial Advective Velocity for Level Set Function

The governing equations in the solid phase ΩS are identical to the Eulerian solid analysis

which is summarized in Section 5.6. The difference from the Eulerian solid analysis is the

treatment of the phase outside of ΩS. In the solid analysis, a void phase is defined to model

an artificial advective velocity for the propagation of the level set field ϕ. The Helmholtz

smoothing method is used to create this artificial velocity fields. On the other hand, there is

a fluid phase ΩF outside of a solid phase ΩS in the FSI system. Theoretically, a smoothing

operation like the Helmholtz smoothing is not necessary because of the existence of the fluid,

and the propagation of ϕ is computed by the solid and fluid velocities as follows:

∂ϕ

∂t
+ vsi

∂ϕ

∂xi
= 0 in ΩS , (5.105)

∂ϕ

∂t
+ vfi

∂ϕ

∂xi
= 0 in ΩF . (5.106)

A straightforward approach for computing the advective velocities of ϕ is to use the solid

velocities vs in ΩS and the fluid velocities vf in ΩF as the advective velocities; see (5.105) and

(5.106). While this propagation should work in theory, numerical experiments have shown

that it is difficult to represent accurate deformation using (5.105) and (5.106). Figure 5.14

shows an example of the deformation of the solid phase based on (5.105) and (5.106). The

top figure shows the deformation of the solid phase (red region). There is a pointed interface

at the right edge of the solid phase. This pointed interface is created due to the leakage of

the level set function ϕ (bottom left figure) and this leakage of ϕ occurs along the streak

line of the fluid. In general, the fluid velocities are much larger than the solid velocities.

Therefore, this leakage originates from the large advective velocities in ΩF, which is identical

to the fluid velocities vf .

To suppress the leakage of the level set function ϕ due to large fluid velocities, an artificial

advective velocity field in the fluid phase v̂f is introduced. The governing equations for the
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Figure 5.14: Leakage of level set function due to fluid velocity

propagation of ϕ are modified as follows:

∂ϕ

∂t
+ vsi

∂ϕ

∂xi
= 0 in ΩS , (5.107)

∂ϕ

∂t
+ v̂fi

∂ϕ

∂xi
= 0 in ΩF . (5.108)

Following the techniques of the Eulerian solid analysis, the artificial advective velocities

v̂fi are computed by the Helmholtz smoothing in the fluid phase ΩF. In addition, Nitsche’s

method is applied to v̂fi to obtain a smooth velocity field for ϕ. Using this artificial advective

velocity in the fluid phase leads to more stable propagation of ϕ in the FSI analysis:

Helmholtz smoothing: −∆v̂fi + v̂fi = 0 in ΩF , (5.109)

Nitsche’s method: [[v̂i]] ≡ vsi − v̂
f
i = 0 on ΓSF . (5.110)

5.8.2 Strong Form of Full-Eulerian FSI

Considering the treatment of the advective velocities for ϕ, the strong forms of the gov-

erning equations for the full-Eulerian FSI are as follows, where the solid material is assumed
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incompressible and the flow is modeled by the incompressible Navier-Stokes (INS) fluid:

• Momentum equation of the solid:

∂vsi
∂t

+ vsj
∂vsi
∂xj

+ αvsi =
1

ρs
∂σs

ij(u
s, ps)

∂xj
+ bsi in ΩS , (5.111)

• Continuity equation of the solid:

∂vsi
∂xi

= 0 in ΩS , (5.112)

• Advection of displacements:

∂usi
∂t

+ vsj
∂usi
∂xj

= vsi in ΩS , (5.113)

• Momentum equation of the fluid:

∂vfi
∂t

+ vfj
∂vfi
∂xj

=
1

ρf
∂σf

ij(v
f , pf )

∂xj
+ bfi in ΩF , (5.114)

• Continuity equation of the fluid:

∂vfi
∂xi

= 0 in ΩF , (5.115)

• Helmholtz smoothing for v̂f :

−∆v̂fi + v̂fi = 0 in ΩF , (5.116)

• Advection of the level set function:

∂ϕ

∂t
+ vsj

∂ϕ

∂xj
= 0 in ΩS , (5.117)

∂ϕ

∂t
+ v̂fj

∂ϕ

∂xj
= 0 in ΩF . (5.118)

The Cauchy momentum equations: (5.111) and (5.114) are common governing equations

for velocities in both phases ΩS and ΩF. The main difference of these momentum equations

is the definition of the stress tensor. The stress tensor of the solid σs is defined by the

displacements us and the solid pressure ps in ΩS. The stress tensor of the fluid σ
f is defined
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by the fluid velocities vf and the fluid pressure pf . In addition, the artificial viscous term

αvsi is introduced in ΩS such that the structural deformations are damped and converge to

a steady-state. α is set to 1 in this case. The body forces are applied only in the solid phase

ΩS. As the displacements are defined only in ΩS, the advection equation of the displacement

is performed only in ΩS. The INS fluid model is used in ΩF. The continuity equation (5.115)

is essential to satisfy the incompressibility. The level set function ϕ is defined in the entire

domain Ω = ΩS ∪ ΩF. The advective velocities for ϕ are the solid velocities vs in ΩS and

the artificial velocities v̂f in ΩF. This artificial velocity field v̂f is defined by the Helmholtz

smoothing (5.116). In addition, the reinitialization technique is applied to ϕ once at four

time steps. On the interface between solid and fluid ΓSF, the jump between the solid and fluid

velocities (5.119) should be zero to satisfy C0 continuities of the velocity fields. Nitsche’s

method is applied to the jump of the artificial advective velocities (5.120):

• interface condition:

[[vi]] ≡ vsi − v
f
i = 0 on ΓSF , (5.119)

[[v̂i]] ≡ vsi − v̂
f
i = 0 on ΓSF . (5.120)

5.8.3 Weak Form of Full-Eulerian FSI

The weak form of the governing equations introduced in Section 5.8.2 is summarized in

this section. Operators of the jump and average are defined by the combination of the solid

and fluid phase.

• Jump operator: [[vi]] = vsi − v
f
i , [[v̂i]] = vsi − v̂

f
i , (5.121)

• Averaging operator: {σ} = wsσs + wfσf (∵ ws + wf = 1) . (5.122)



www.manaraa.com

105

Consider the spaces of trial functions Sh and test functions Vh, the trial and test functions

for the full-Eulerian FSI system are defined as follows:

• Trial functions: {vs, ps,us,vf , pf , v̂f , ϕ} ∈ Sh , (5.123)

• Test functions: {δvs, δps, δus, δvf , δpf , δv̂f , δϕ} ∈ Vh . (5.124)

In addition, the following notations in terms of integrals are used for simplicity:

• Volume integral: (a, b)α ≡
∫
Ωα

dΩ aTb , (5.125)

• Boundary integral: ⟨a, b⟩Γβ
≡

∫
Γβ

dΓ aTb . (5.126)

Using these notations, the residual of the full-Eulerian FSI using the XFEM is summarized

as follows:

Rs
v({δvs, δps}; {vs, ps,us}) +Rs

u(δu
s; {us,vs})

+Rf
v ({δvf , δpf}; {vf , pf}) + R̂f

v (δv̂
f ; v̂f ) +Rϕ(δϕ; {ϕ,vs, v̂f})

+RFSI({δvs, δps, δvf , δpf , δv̂f}; {vs, ps,us,vf , pf , v̂f})

+Rgp({δvs, δps, δvf , δpf , δv̂f}; {vs, ps,vf , pf , v̂f}) = 0 . (5.127)

Each term of (5.127) are defined as follows. To stabilize the advective terms, SUPG stabi-

lization is applied to (5.111), (5.113), (5.114) and (5.117). In addition, PSPG stabilization

is applied to stabilize the incompressibility of the solid and the fluid. Nitsche’s method is

applied to the boundary integral on the interface ΓSF in RFSI:

Rs
v =

(
δvs, ρs

∂vs

∂t
+ ρsvs · ∇vs + αvs − ρsbs

)
S

+
(
∇δvs, σs(us, ps)

)
S
+ (δps,∇ · vs)S

+
∑

ne∈ΩS

(
τSUPGv

s · ∇δvs +
τPSPG
ρs
∇δps, r̃s

v

)
S

− ⟨δvs, σs(us, ps) · n̂s⟩ΓS
, (5.128)

Rs
u =(δus, r̃s

u)S +
∑

ne∈ΩS

(τSUPGv
s · ∇δus, r̃s

u)S , (5.129)

Rf
v =

(
δvf , ρf

∂vf

∂t
+ ρfvf · ∇vf − ρfbf

)
F

+
(
∇δvf , σf (vf , pf )

)
F
+ (δpf ,∇ · vf )F



www.manaraa.com

106

+
∑

ne∈ΩF

(
τSUPGv

f · ∇δvf +
τPSPG
ρf
∇δpf , r̃f

v

)
F

− ⟨δvf , σf (vf , pf ) · n̂f⟩ΓF
, (5.130)

R̂f
v =(∇δv̂f , ρs∇v̂f )F + (δv̂f , ρsv̂f )F − ⟨δv̂f , ρs∇v̂f · n̂f⟩ΓF

, (5.131)

Rϕ =(δϕ, r̃sϕ)S +
∑

ne∈ΩS

(τSUPGv
s · ∇δϕ, r̃sϕ)S

+ (δϕ, r̃fϕ)F +
∑

ne∈ΩF

(τSUPGv̂
f · ∇δϕ, r̃fϕ)F , (5.132)

RFSI =
1

2

⟨
σf (δvf , δpf ) · n̂s→f , [[v]]

⟩
ΓSF

+
1

2

⟨
σs(δvs, δps) · n̂s→f , [[u]]

⟩
ΓSF

+

⟨
[[δv]], {σ} · n̂s→f

⟩
ΓSF

+ ηN
⟨
[[δv]], [[v]]

⟩
ΓSF

+ ⟨δv̂f ,∇v̂f · n̂s→f⟩ΓSF
+ ηN

⟨
δv̂f , [[v̂]]

⟩
ΓSF

, (5.133)

where ηN is a penalty factor of Nitsche’s method. r̃sv, r̃
s
u, r̃

f
v , r̃

s
ϕ and r̃fϕ are the scalar residuals

defined previously in Section 5.8.2. Nitsche’s penalty term for the artificial advective velocity

v̂fi (last term of (5.133)) is applied in the fluid phase and thus, the corresponding test function

is defined as δv̂f based on the one-sided Nitsche method:

r̃s
v ≡ ρs

∂vs

∂t
+ ρsvs · ∇vs + αvs −∇σs(us, ps)− ρsbs , (5.134)

r̃s
u ≡

∂us

∂t
+ vs · ∇us − vs , (5.135)

r̃f
v ≡ ρf

∂vf

∂t
+ ρfvf · ∇vf −∇σf (vf , pf )− ρfbf , (5.136)

r̃sϕ ≡
∂ϕ

∂t
+ vs · ∇ϕ , (5.137)

r̃fϕ ≡
∂ϕ

∂t
+ v̂f · ∇ϕ . (5.138)

Following the works of Hansbo et al. [74], Jenkins et al. [101, 102] and Mayer et al. [70],

only the traction from the fluid side is used as the traction at the interface. This approach

is consistent with the traditional FSI approach where forces are transferred from the fluid

phase to the solid phase rather than its vice versa. Hence, the solid traction is replaced by
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the fluid traction:

{σ} = wsσs(us, ps) + wfσf (vf , pf )→ σf (vf , pf ) , (5.139)

1

2

⟨
σs(δvs, δps) · n̂s→f , [[u]]

⟩
ΓSF

→ 1

2

⟨
σf (δvf , δpf ) · n̂s→f , [[v]]

⟩
ΓSF

, (5.140)

Therefore, (5.133) is simplified as follows:

RFSI =

⟨
σf (δvf , δpf ) · n̂s→f , [[v]]

⟩
ΓSF

+

⟨
[[δv]], σf · n̂s→f

⟩
ΓSF

+ ηN
⟨
[[δv]], [[v]]

⟩
ΓSF

+ ⟨δv̂f ,∇v̂f · n̂s→f⟩ΓSF
+ ηN

⟨
δv̂f , [[v̂]]

⟩
ΓSF

. (5.141)

The derivation of (5.133) and (5.141) is summarized in Appendix B.

In addition, the face-oriented ghost penalty method is applied to suppress the instability

due to small intersected XFEM meshes. This ghost penalty method is applied on the faces

of intersected elements which is denoted as Γgp:

Rgp({δvs, δvf , δpf}; {vs,vf , pf}) =ηgpv
⟨
[[∇δvs]] · n̂s→f , [[∇vs]] · n̂s→f

⟩
Γgp

+ ηgpp

⟨
[[∇δps]] · n̂s→f , [[∇ps]] · n̂s→f

⟩
Γgp

+ ηgpv

⟨
[[∇δvf ]] · n̂s→f , [[∇vf ]] · n̂s→f

⟩
Γgp

+ ηgpp

⟨
[[∇δpf ]] · n̂s→f , [[∇pf ]] · n̂s→f

⟩
Γgp

+ ηgpv

⟨
[[∇δv̂f ]] · n̂s→f , [[∇v̂f ]] · n̂s→f

⟩
Γgp

, (5.142)

where ηgpv and ηgpp are the penalty factors for the ghost penalty method. Generally, penalty

factors for velocity and pressure are distinguished and have different values.

5.9 Numerical Example of Full-Eulerian FSI using XFEM

As a benchmark problem for the full-Eulerian FSI analysis, the system shown in Figure

5.15 is considered. A solid beam immersed in a flow channel is clamped at its left and subject
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to a body force.

Figure 5.15: System for numerical example of full-Eulerian FSI

The solid and fluid phases are denoted as ΩS and ΩF respectively. The region of the root

of the solid beam ΩD is fixed. ΩD is a part of solid phase ΩS (ΩD ⊂ ΩS). Γ1
D and Γ2

D are

Dirichlet boundary conditions (BCs). The hydrostatic pressure p is not constraint by these

BCs. The summary of Dirichlet BCs is as follows:

vx =
6

3.942
y(3.94− y) m/s, vy = 0 m/s on Γ1

D (inlet flow) , (5.143)

vx = 0 m/s, vy = 0 m/s on Γ2
D (no slip BC) , (5.144)

vx = 0 m/s, vy = 0 m/s in ΩD (fixed solid) . (5.145)

The traction free boundary condition is applied on the right edge. ΩS is modeled by the

incompressible neo-Hookean material (5.146) under the assumption of the finite strains. ΩF

is modeled by the incompressible Navier-Stokes (INS) equations. In addition, the body force

bs is applied only to the solid phase. The geometry and material parameters of this system

are summarized in Table 5.7:

•Incompressible neo-Hookean: W (IC1) = C10(IC1 − 3) (∵ IC1 = TrC ) . (5.146)
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Table 5.7: Parameters of full-Eulerian FSI analysis (infinitesimal strain case)
Category Parameter Symbol Value

Solid Density ρs 1000kg/m3

parameter of neo-Hookean material C10 0.0375MPa
body force bs (0,−3)m/s2

thickness ds 1m
Fluid density ρf 1000kg/m3

dynamic viscosity µf 0.1kg/(m·s)
body force bf (0, 0)m/s2

thickness df 1m
Interface penalty of Nitsche’s method ηN 200kg/(m3·s)

penalty of GP method for v ηgpv 2.5× 10−4∆y kg/(m·s)
penalty of GP method for p ηgpp 6.25× 10−4∆y3 m3·s/kg

Calculation time increment ∆t 0.005s
mesh size in x ∆x 0.131m (x ≤ 7.88m)

0.262m (x > 7.88m)
mesh size in y ∆y 0.131m
number of node nn 106× 31 = 3286
number of mesh ne 105× 30 = 3150

Figure 5.16 shows the time evolution of the solid phase ΩS using the parameters listed

in Table 5.7. The left column is the history of the solid velocity in y direction vsy. The solid

phase is accelerated by the body force at the initial stage, then its velocity decreases due to

the fluid traction. Finally, a steady-state is obtained. The corresponding displacement in

y: uy and the von Mises stress σVM (Cauchy stress) shown in the middle and right columns

of Figure 5.16. In this example, the artificial advective velocity fields (Section 5.8.1) are

used to propagate the level set function ϕ and the appropriate deformation is obtained. The

computational results of the fluid phase ΩF are summarized in Figure 5.17. The left and

middle columns show the history of the fluid velocities vf . As the solid phase ΩS deforms

in response to the body force, the distribution of the fluid velocities changes appropriately.

vfx has large value in the flow channel below the right edge of ΩS because this flow channel

becomes narrow due to the bending of a solid structure. In terms of vfy , up and down fluid

motion occurs at the left edge of ΩS because the fluid avoids the solid structure and then,

the flow above and below the solid structure joins together at the right edge of ΩS. The

corresponding fluid shear stress is shown in the right column of Figure 5.17.
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Figure 5.16: History of solid properties

Figure 5.17: History of fluid properties
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The convergence of solutions of the full-Eulerian FSI analysis is studied. The models for

this analysis are summarized in Table 5.8 and the finest model is used as a reference model

to compute the L2 errors.

Table 5.8: Models for convergence check
Model Number of Node Spatial Discretization h (m)

coarse model 1 2125 0.164263
model of Figures 5.16 and 5.17 2 3286 0.131410

3 4699 0.109509
4 5781 0.098558

finest model (reference) 5 7614 0.085702

The L2 errors of representative quantities of interest (velocity v, displacement u, hydrostatic

pressure p and von Mises stress σVM) for both the solid and fluid phases are defined as follows:

Err(v) =

√∫
S
dΩ |v − vref|2∫
S
dΩ |vref|2

, (5.147)

Err(p) =

√∫
S
dΩ (p− pref)2∫
S
dΩ pref 2

, (5.148)

Err(u) =

√∫
S
dΩ |u− uref|2∫
S
dΩ |uref|2

, (5.149)

Err(σVM) =

√∫
S
dΩ (σVM − σref

VM)
2∫

S
dΩ σref 2

VM

. (5.150)

Figure 5.18 illustrates these L2 errors with respect to the size of the spatial discretization h

(mesh size) at the final time step (t = 0.5s).

The top left figure shows the L2 errors of the solid velocity vs and the fluid velocity vf .

The top right figure illustrates the L2 error of the displacement u. As the displacement are

defined only in the solid body, the L2 error of the solid phase is only shown. The bottom left

figure shows the L2 errors of the hydrostatic pressure in both phases, ps and pf . The bottom

right figure shows the L2 errors of the von Mises stress σs
VM in the solid phase, and the

corresponding measure of fluid stresses; the in-plane effective shear stress q = |σ1 − σ2|/2.

The L2 errors in the solid phase are computed by the projecting the quantity of interest
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Figure 5.18: Convergence of Eulerian FSI (final time step, t = 0.5s)

onto the initial configuration of the reference model. The L2 errors in the fluid phase are

computed by the projection onto the current configuration at the final time step of the

reference model. This L2 errors are computed in the domain belongs to the fluid phase at

all models in the steady-state.

All quantities except the hydrostatic pressure of the fluid phase pf have larger rate

of convergence than 1 and thus, this indicates that the proposed Eulerian FSI analysis is

computationally efficient. The convergence of the fluid pressure pf is slower than the other

quantities and this is an unclear point.

In terms of the L2 error of the velocity fields, the L2 error of the solid phase is larger than

the one of the fluid phase. As the results of the final time step are used, the solid velocities

vs are almost zero because the solid structure reaches the steady-state. On the other hand,

the fluid velocities vf at this time are non-zero because there is inlet flow at the left edge

of this system. Therefore, the L2 error of vs tends to be larger than one of vf because the
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computed L2 error is normalized by a smaller reference value.

There is a reference work (Kamrin et al. [68]) which is similar to this numerical example.

The reference work is also based on an Eulerian FSI method but uses a finite difference

method and a VOF-like interface capturing method. The difference between current numer-

ical example and reference work is shown in Table 5.9.

Table 5.9: Difference between current computation and reference work
Reference Work Computed Example

Method Eulerian finite difference method Eulerian XFEM
blurred-interface method (like VOF)

Interface isovalue of level set function isovalue of level set function
Solid Compressible neo-Hookean (ν = 0.41) incompressible neo-Hookean
Fluid nearly incompressible NS Fluid (ν = 0.499) incompressible NS Fluid
Mesh Finer meshes are necessary. Coarse meshes are available.

The problem studied in the reference works is the deformation of a rotor by incoming

fluid flow. Figure 5.19 shows the history of the deformation of the rotor. The center of the

rotor is fixed and the rotor is twisted by the rotational flow created by the inlet flow at

the left edge (green region) and the outlet flow at the upper edge (sky-blue region). The

computed results (Figures 5.16 and 5.17) show a smooth deformation similar to the one in

this reference work. Figure 5.20 shows the rate of convergence of the reference work and

these results agree qualitatively well with the results found in this thesis in Figure 5.18.

However, the rate of convergence of the reference work is much smaller compared with the

Eulerian XFEM except the fluid pressure pf . Although the rate of convergence of pf is slow,

the performance of the proposed method (Eulerian XFEM) seems to be better than the

reference work (finite difference method). One reason that the proposed method is better

than the reference work, is that the representation of the interface in the proposed method

is performed by the XFEM and more accurate than the blurred-interface method like the

VOF method used in the reference work.
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Figure 5.19: reference work [68] (deformation of hyperelastic body in INS fluid)

Figure 5.20: Reference work [68] (L2 error corresponding to Figure 5.19)
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5.10 Discussion

In this chapter, studies of the Eulerian solid formulation and the full-Eulerian FSI formu-

lation using the XFEM were discussed. The entire FSI system is described by an Eulerian

formulation, including the solid phase. The time evolution of the solid phase based on the

Eulerian description was computed using SUPG/PSPG stabilization because of the existence

of the advection term. FSI is modeled on the interface in the fixed background meshes using

Nitsche’s method. In addition, the face-oriented ghost-penalty method is applied for the

treatment of small intersected elements created by moving interfaces. The ill-conditioning

problem due to moving interfaces is suppressed by the face-oriented ghost-penalty method.

The key challenge of the full-Eulerian FSI method is the representation of the interfaces.

This research introduced the conservative level set function and obtained stable propagation

of deformed solid structures. In consequence, the capability of the full-Eulerian FSI method

to treat large deformation was verified.

However, the full-Eulerian FSI method using the XFEM has two fundamental drawbacks.

The first drawback is the representation of interfaces of the solid. As the Eulerian descrip-

tion is used in the solid domain, the deformation of the solid structures is captured by the

momentum equation with an advective term and the advection of the conservative level set

function. In general, the solution of the advection equations needs very fine time increments

∆t to represent accurately the deformation of the solid. The steady-state problems can-

not be computed efficiently by the full-Eulerian FSI method using the XFEM due to the

interface capturing method. The second drawback is the numerical interpolation error due

to the XFEM. As the XFEM and the time stepping scheme are used in this chapter, the

interpolation error due to moving interfaces always occurs. While all numerical examples

summarized in this chapter seemed to be successful, these examples are computationally

incorrect because of this error. This drawback can be easily overcome by the application of

the space-time XFEM. However, the first drawback is inherent to the full Eulerian model.
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Thus, these findings suggest that another FSI approach is needed for the robust and scalable

FSI analysis.
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Chapter 6

Lagrangian-Immersed FSI Method using XFEM

6.1 Outline

This chapter focuses on the Lagrangian-immersed FSI method. The Lagrangian-immersed

FSI method has the ability to handle both FSI and contact simultaneously. In this method,

the solid phase is discretized by the Lagrangian meshes (deformable meshes) and the fluid

phase is discretized by the Eulerian meshes (fixed background meshes). This method is an

intermediate method of the arbitrary Lagrangian-Eulerian FSI method (ALE-FSI method)

and the full-Eulerian FSI method. Mayer, Wall, et al. [69, 70] and Miller et al. [91] have

been already studied this intermediate approach.

In the ALE-FSI and the full-Eulerian FSI, the solid and fluid elements are defined in

the same computational domain and the interfaces between the solid and the fluid match.

Therefore, boundary integrals on the interface can be exactly computed within one inter-

sected element. Considering the Lagrangian-immersed FSI with the XFEM, the interfaces

between the solid and the fluid are defined in both the Lagrangian and Eulerian meshes be-

cause the solid and fluid elements are spatially disconnected. In this chapter, the interfaces

of Lagrangian and Eulerian meshes are denoted as ΓL and ΓE, respectively. These interfaces

do not match as shown in Figure 6.1, because there are two types of meshes based on the La-

grangian and Eulerian description, respectively. Some small but non-zero gap exists between

these two interfaces. The way to compute boundary integrals of the Lagrangian-immersed

FSI method is similar to methods for computing boundary integrals in computational con-

tact mechanics. Therefore, the more complicated treatment is needed than the ALE-FSI

method and the full-Eulerian FSI method.
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Figure 6.1: Lagrangian and Eulerian interface

A main advantage of the Lagrangian-immersed FSI method is the ability to simulate FSI

problems with contact. As the solid and fluid meshes are decoupled and the solid structures

are just immersed within the Eulerian system, there is no limitation of the deformation. In

addition, as the solid phase is defined by the Lagrangian description, conventional contact

formulations are directly applicable and thus, the implementation of the contact formulation

is much easier than in the full-Eulerian FSI method.

While the physical model is identical with [69, 70], there are several differences in the

actual numerical implementation. [69, 70] updates the interface in the Eulerian system using

a geometric approach [103] as an additional technique in addition to a FSI solver. In the

Lagrangian-immersed FSI method, the level set projection method is introduced and the

update of interfaces in the Eulerian system is automatically performed in a monolithic FSI

solver. The update of geometry is included in the weak form of FSI and thus additional

techniques in addition to the FSI solver is not needed. FSI is computed between non-

matching Lagrangian and Eulerian interfaces and techniques of contact formulation such as

the master-slave concept, the node-to-surface (NTS) pairing, and the gap equation are ap-

plied. Besides, Nitsche’s method is used instead of the Lagrange multiplier method used in

[69, 70]. The proposed Lagrangian-immersed FSI method allows for a simpler implementa-

tion than [69, 70]. As the solid phase is defined by the Lagrangian description, the stabilized

Lagrange multiplier method proposed by [75] is directly applied to this method as a contact

formulation.

In this research, the Heaviside-enriched XFEM is used for the Lagrangian-immersed FSI
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method. The level set function ϕ used for the Heaviside-enriched XFEM is a Heaviside-type

level set function, considering the level set projection explained at the following section:

ϕ(x) =

[
1 + exp

(
ϕs

εϕ

)]−1

, (6.1)

where ϕs is the signed-distance level set function and ϕ is the Heaviside-type level set func-

tion. This ϕ is defined between 0 < ϕ < 1 and the iso-contour ϕ = 0.5 defines immersed

boundaries in the XFEM.

The organization of this chapter is as follows: Section 6.2 summarizes the physical as-

pects of the Lagrangian-immersed FSI method. FSI between non-matching interfaces and

the contact formulation are described in this section. In Section 6.3, the level set projec-

tion method is proposed to update the geometry. The finite element discretization of the

Lagrangian-immersed FSI method using the XFEM is summarized in Section 6.4. Section

6.5 describes the actual numerical implementation. In Section 6.6, two steady-state FSI

problems, a transient multibody contact problem and a transient multibody FSI-contact

problem are studied using the XFEM with a standard time stepping scheme. Section 6.7

summarizes the Lagrangian-immersed FSI method using the XFEM. In addition, the draw-

back of the Lagrangian-immersed FSI method using the XFEM is discussed and the necessity

of the combination of the Lagrangian-immersed FSI method and the space-time XFEM is

discussed.

6.2 Physics Model

This section summarizes the governing equations of both the Eulerian and Lagrangian

systems, and the interface conditions for FSI. In this section, an Eulerian domain ΩE and

a set of Lagrangian domains ΩL are considered. A fluid domain ΩF is embedded within

ΩE. ΩL is separated into multiple meshes Ωi
L, which correspond to individual solid bodies:

ΩL =
∑

iΩ
i
L. The fluid and solid meshes are disconnected entities. FSI between the fluid
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and solid is modeled at the interface in the Eulerian system ΓE and the interface in the

Lagrangian system ΓL. In addition, the contact formulation for the Lagrangian description

based on the stabilized Lagrange multiplier method is described in this section.

6.2.1 Eulerian System

An Eulerian system ΩE contains a fluid domain ΩF and a void domain ΩV : ΩE = ΩF∪ΩV.

ΩV is the projected domain of deformed solid structures defined in the Lagrangian system

ΩL. The immersed interface in ΩE is denoted as ΓE and FSI is computed on this ΓE. The

fluid phase is modeled by the incompressible Navier-Stokes (INS) fluid equations:

∂vfi
∂t

+ vfj
∂vfi
∂xj

=
1

ρf
∂σf

ij(v
f , pf )

∂xj
+ bfi in ΩF , (6.2)

∂vfi
∂xi

= 0 in ΩF. (6.3)

The momentum equation of fluid is (6.2) and the fluid continuity equation is (6.3). In this

thesis, physical quantities in the fluid phase ΩF are denoted by lower cases, such as the fluid

velocity vfi and the fluid pressure pf , and they are defined in the current configuration x

based on the Eulerian description. bfi is a body force for the fluid and σf
ij means the Cauchy

stress tensor of the fluid defied as follows:

σf
ij(v

f , pf ) = −pfδij + 2µfεij(v
f ) , (6.4)

where εij is the strain rate tensor of the fluid velocity vf :

εij(v
f ) =

1

2

(
∂vfi
∂xj

+
∂vfj
∂xi

)
. (6.5)

6.2.2 Lagrangian System

The Lagrangian system ΩL contains multiple solid bodies defined in each Lagrangian

mesh Ωi
L. Each Lagrangian mesh Ωi

L contains a solid domain Ωi
S and a dummy displacement

domain Ωi
D. Physical quantities in ΩL are defined by the Lagrangian description. ΩS and
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ΩD denote the sets of Ωi
S and Ωi

D.

The solid phase ΩS is governed by the momentum equation based on the initial configu-

ration:

ρs
∂2U s

i

∂t2
+ ρsαs∂U

s
i

∂t
=
∂Πs

iJ

∂XJ

+ ρsBs
i in ΩS0 , (6.6)

where the lower subscript of zero; (·)0, denotes a quantity in the initial configuration. Physi-

cal quantities in the Lagrangian system ΩL are denoted by upper cases and they are defined

in the initial configuration X. U s
i is solid displacement, Bs

i is a body force for the solid

and Πs
iJ is the first Piola-Kirchhoff tensor. Πs

iJ is defined by the solid displacement and

solid pressure P s for the incompressible constitutive law: Πs
iJ = Πs

iJ(U
s, P s). αs is an artifi-

cial viscosity for the steady-state FSI problem, that in the absence of time-varying external

forces, causes the structure to converge to a steady-state solution.

In this work, (6.6) is separated into two parts: the momentum equation, similar to the

momentum equations in the fluid phase (6.7) and the displacement-velocity relationship

(6.8). To simplify the fluid-structure interaction model, the solid velocity V s
i is introduced

as an independent state variable:

ρs
∂V s

i

∂t
+ ρsαsV s

i =
∂Πs

iJ

∂XJ

+ ρsBs
i in ΩS0 , (6.7)

∂U s
i

∂t
= V s

i in ΩS0 . (6.8)

The reason to use only first derivative terms with respect to t is motivated by the Lagrangian-

immersed FSI method using the space-time XFEM (Chapter 7), because the linear interpo-

lation along time is used in Chapter 7.

The Lagrangian system ΩL also contains the dummy displacement domain ΩD, which is

related to the projection of deformed structures onto the Eulerian system ΩE; see Section

6.3. In the Lagrangian-immersed FSI method, the interface in the Eulerian system is not

propagated like the full-Eulerian FSI analysis. Instead, the geometry of the interface in the
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Eulerian system (background meshes) is created based on the projection of the level set

function in the Lagrangian system (deformable meshes). As the interface is defined by the

iso-contour line of the level set function ϕ (ϕ = 0.5 in this work), the deformed level set

function outside of the solid structures is needed to project the interface geometry onto the

Eulerian system. The dummy displacement domain ΩD0 and the dummy displacement Ud
i

are needed to create the level set function ϕ defined on the deformed Lagrangian mesh at

the vicinity of the interface. The necessary conditions for this dummy displacement domain

are as follows.

• The continuity of solid displacements in ΩS0 and dummy displacements in ΩD0 should

be guaranteed across the interface.

• There is no influence of dummy displacements in ΩD0 on the solid displacements in

ΩS0.

In this research, the following two methods which satisfy above conditions are used.

The first method is the Helmholtz smoothing method. The dummy displacement Ud
i is

governed by the following Helmholtz equation:

−∆XU
d
i + Ud

i = −∂
2Ud

i

∂X2
− ∂2Ud

i

∂Y 2
+ Ud

i = 0 in ΩD0 , (6.9)

where ΩD0 means the dummy displacement domain in the initial configuration. Nitsche’s

method is applied to enforce the continuity of the displacement at the interface of the La-

grangian system in the initial configuration ΓL0 between ΩS0 and ΩD0:

[[Ui]] = U s
i − Ud

i = 0 on ΓL0 , (6.10)

where [[·]] is a jump operator.

The second method for the dummy displacement is the dummy solid method. The dummy
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solid method uses (6.7) and (6.8) also in ΩD0:

ρd
∂V d

i

∂t
+ ρdαdV d

i =
∂Πd

iJ

∂XJ

+ ρdBd
i in ΩD0 , (6.11)

∂Ud
i

∂t
= V d

i in ΩD0 . (6.12)

In addition, Nitsche’s method is applied considering the traction boundary condition and

the continuity of displacement (6.10). The purpose of the dummy solid method is that follow

the deformation of the solid domain ΩS0. In general, αd and Bd
i are set to zero, but the other

material parameters are identical to the parameters of the solid phase ΩS0.

Considering the case when a solid structure has the rigid body rotation, the dummy

displacement domain ΩD0 defined by the dummy solid method can follow its rigid body

rotation because the continuity of stress is also considered. Thus, the topology of mesh

connectivity is correctly preserved and the negative Jacobian of elements is suppressed.

On the other hand, the Helmholtz smoothing method only considers the continuity of the

displacement and the continuity of numerical flux (solid stress) is not considered. Thus,

it is hard to follow the rigid body rotation using the Helmholtz smoothing. Overall, the

dummy solid method is more robust than the Helmholtz smoothing method. However, the

Helmholtz method works fine for the case of pinned structures and the case of small rigid

body rotation.

6.2.3 Fluid-Structure Interaction (FSI)

The Lagrangian-immersed FSI method uses separate meshes for the Lagrangian and Eu-

lerian systems and thus, a pair of non-matching interfaces is used for the fluid-structure

interaction. The key challenge of this FSI is the procedure to set integration points for

boundary integrals between non-matching interfaces. A problem where boundary integrals

using non-matching interfaces is commonly encountered, is the contact formulation. In con-

tact formulations, there are several approaches to establish contact pairs (pairs of interfaces
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for contact). The simplest approach is based on the master-slave concept and the node-to-

surface pairing (NTS paring: slave nodes contacts the surface in master elements).

In this research, the Eulerian interface ΓE is the master interface, and the Lagrangian

interface ΓL is the slave interface. Boundary integrals of FSI are evaluated on the master

interface ΓE. Master integration points on ΓE are defined by the quadrature rule on the

master interface, and slave integration points on ΓL are determined by the projection of

master integration points ΓE. The relation between master and slave points is defined by

the following “gap equation”:

xEi + gnnEi(ϕE)−XLi − U s
Li

(
XL

)
= 0 , (6.13)

where xEi denotes the current configuration of the Eulerian system, nEi is the deformed

normal of the Eulerian system and ϕE is the level set function of the Eulerian system. XLi

and U s
Li are the initial configuration and solid displacement of the undeformed Lagrangian

system ΩL0. gn denotes the normal gap between master (Eulerian) integration points and

slave (Lagrangian) integration point and thus, slave integration points are determined by

the gap gn and the master normal nEi. Figures 6.3 and 6.2 show examples of the projection

from the master integration points to the slave integration points.

Figure 6.2: Projection of values from master interface ΓE to slave interface ΓL
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Figure 6.3: Projection from master integration points to slave integration points
(−: master (Eulerian) interface, −: slave (Lagrangian) deformed interface)
(◦: master integration points, ∗: slave integration points by projection)

Based on the master-slave concept, the traction boundary condition and the continuity

condition of velocity are enforced on the master (Eulerian) interface ΓE:

T̂ s
i

∣∣
ΓL
− tfi = 0 on ΓE , (6.14)

V̂ s
i

∣∣
ΓL
− vfi = 0 on ΓE . (6.15)

Here, T s
i is the solid traction on ΓL and tfi is the fluid traction on ΓE defined as follows:

T s
i = σs

ijn
s
Lj = Πs

iJn
s
L0J on ΓL , (6.16)
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tfi = σf
ijn

f
Ej on ΓE , (6.17)

where ns
L = {ns

Li} and ns
L0 = {ns

L0I} are the outward facing normals for the solid on the

deformed Lagrangian interface ΓL and the undeformed Lagrangian interface ΓL0 respectively,

and nf
E = {nf

Ei} is the outward facing normal for the fluid on the Eulerian interface ΓE. As

ΓE is the master interface, T̂ s
i

∣∣
ΓL

and V̂ s
i

∣∣
ΓL

mean projected values from a master integration

point onto a corresponding slave integration point.

6.2.4 Contact Model

This section describes the frictionless contact model for the large deformation based on

the Lagrangian description. This approach follows the work of Lawry and Maute [75]. In the

presence of large relative motion between surfaces of master and slave bodies, the dependence

of coincident location along the interface on the displacements of either body needs to be

accounted for. To this end, the surfaces of both bodies can be mapped to a parametric space.

This parameterization simplifies the definition of coincident surface location by describing the

master and slave material coordinatesXA andXB, and subsequently the displacements U sA

and U sB in a reduced dimensional space, where upper subscripts A and B mean properties

of the master and slave bodies. The surfaces of master and slave bodies are parameterized

by some surface parameters α and β respectively, as illustrated in Figure 6.4.

Figure 6.4: Contact interface Γc0 and normal gap gn (A: master, B: slave)
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To provide a continuous representation of coincident surface positions, both surface pa-

rameterization schemes are coupled through the following relationship:

XA
i (α) + U sA

i

(
XA(α)

)
+ gnn

A
Li(X

A,U sA)−XB
i (β)− U sB

i

(
XB(β)

)
= 0 , (6.18)

where gn is the normal gap between deformed bodies A and B in the current configuration,

and nA
L = {nA

Li} is the outward facing normal for the solid domain in the master solid body

in the deformed Lagrangian system.

The following non-penetration condition should be satisfied in the current configuration:

gnλ = 0, gn ≥ 0, λ ≤ 0 , (6.19)

where λ is a Lagrange multiplier in the current configuration. By pulling back (6.19) to the

initial configuration, the following non-penetration condition is obtained and used to enforce

the contact:

g0nλ
0 = 0, g0n ≥ 0, λ0 ≤ 0 . (6.20)

Here, g0n and λ0 are the normal gap and the Lagrange multiplier in the initial configuration

of the master body A. g0n is transformed from gn by the Jacobian of the surface area based

on the Nanson’s formula:

g0n = gnj
A , (6.21)

jA = det(FA)∥(FA)−TnA
L0∥ , (6.22)

where FA and nA
L0 = {nA

L0I} are the deformation gradient tensor and the normal on the

undeformed interface of the master body.

(6.21) is exactly identical to the KKT condition in the initial configuration. λ0 is the con-

tact pressure on the undeformed master interface based on the standard Lagrange multiplier
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method for the contact:

λ0 = nA
L0

T
SAnA

L0 , (6.23)

where SA is the second Piola-Kirchhoff stress tensor of the master body A. The potential of

the standard Lagrange multiplier method Wc is defined in the initial configuration:

Wc =

∫
Γc0

dΓ g0nλ
0 . (6.24)

By taking a variation ofWc, the weak form of the contact condition in the initial configuration

Γc0 based on the total Lagrangian formulation is as follows:∫
Γc0

dΓ δg0nλ
0 +

∫
Γc0

dΓ δλ0g0n = 0 . (6.25)

When the master and slave interfaces are not in contact (gn > 0), λ0 vanishes. On the other

hand, a non-zero contact pressure λ0 is needed to enforce that g0n is zero and to satisfy the

KKT condition (6.21).

Contact analysis based on (6.25) is reported that the distribution of contact pressure

tends to become oscillatory [75]. To obtain a stable distribution of the contact pressure, the

stabilized Lagrange multiplier method (Wriggers [104]) is effective. The weak form of the

stabilized Lagrange multiplier method is a modification of (6.25) as follows:∫
Γc0

dΓ δg0nλ
0 +

∫
Γc0

dΓ δλ0(λ0 − λ̃0 − γcg0n) = 0 , (6.26)

λ̃0 = κAnA
L0

T
SAnA

L0 + κBnB
L0

T
SBnB

L0(j
B)−1jA , (6.27)

where λ̃0 is an average contact pressure along the normal direction and jB is the Jacobian of

the surface area of the undeformed interface of the slave body. The weights for computing

the average contact pressure λ̃0 are defined as follows based on Dolbow et al. [100]:

κp =
|Ωp|/Ep

|ΩA|/EA + |ΩB|/EB
(p = A,B) , (6.28)

where |Ωp| is the elemental volume of the solid phase in the master and slave body (p = A,B)
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and Ep is the Young’s modulus of the master and slave solid phase. In addition, the penalty

factor γc in the stabilized Lagrange multiplier method (6.26) is defined by Young’s modulus

Ep and the master element size hA:

γc =
αc

hA
(EA + EB) . (6.29)

αc is a constant and set as αc = 5 in this work. Detailed discussions are summarized in

Appendix D.

6.3 Level Set Projection for Fluid-Structure Interaction

In the Lagrangian-immersed FSI method, both the solid and fluid domains are spatially

disconnected because the solid and fluid domains are defined in different meshes: the La-

grangian system ΩL and the Eulerian system ΩE, respectively. Therefore, the fluid-structure

interaction between the solid and fluid phases is modeled with non-matching interfaces: the

deformed Lagrangian interface ΓL and the Eulerian interface ΓE. As the Lagrangian system

ΩL is defined by deformable meshes, the deformed Lagrangian interface ΓL is explicitly de-

fined and driven by displacements U (solid displacements U s or dummy displacements U d).

While ΓL can be directly defined, some procedures to define a corresponding interface ΓE

in the Eulerian system ΩE is needed. In this research, the level set projection method is

introduced. The main idea of the level set projection method is that the projected level set

field solves the following minimization problem:

minimize
ϕ

1

2

∫
ΩE

dΩ

(
ϕ(x)− Φ̂(X +U)

)2

, (6.30)

where ϕ is the level set function defined in the Eulerian system ΩE. In addition, Φ̂ is a

projected value of Φ from the deformed Lagrangian system ΩL onto the Eulerian system

ΩE, and Φ is the level set function defined in the undeformed Lagrangian system ΩL0. Φ

is defined based on the initial configuration X because the solid phase is computed by
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the total Lagrangian formulation. As Φ(X) is fixed in the initial configuration, this Φ is

a time-invariant parameter. Therefore, it is necessary to compute the deformed level set

function Φ̂(x) based on the deformed configuration x using displacement U(X, t); U s(X, t)

or U d(X, t). The following equation is a relation between Φ and Φ̂:

Φ(X) = Φ̂(X +U ) = Φ̂(x−U ) . (6.31)

The minimization problem (6.30) is equivalent to the following variational problem:

Rϕ =

∫
ΩE

dΩ δϕ

(
ϕ(x)− Φ̂(X +U)

)
= 0 . (6.32)

This projection method does not depend on the type of the level set function, but the

computational efficiency varies by the type of the level set function. The most efficient

projection is the projection based on the Heaviside-type level set function (6.1). As the

Heaviside-type level set function varies only at the vicinity of interfaces, the projection needs

to be only performed in the vicinity of interfaces. On the other hand, the projection based

on the signed-distance level set function, which is a standard type of the level set function,

has to compute accurate projection in the whole domain, because the signed-distance level

set function varies everywhere. Therefore, the Heaviside-type level set function (6.1) is used

in the Lagrangian-immersed FSI method.

To capture accurately the interface ΓE in ΩE, the weighted projection focusing on the

vicinity of interfaces is introduced:

minimize
ϕ

1

2

∫
ΩE

dΩ f(Φ̂)

(
ϕ(x)− Φ̂(X +U )

)2

, (6.33)

where f(Φ̂) is a weighting function. Mathematical characteristics of f(Φ̂) are summarized

as follows.

• f(Φ̂) should have the maximum weight at the value which indicates the location of the

interface.
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• f(Φ̂) should be larger than 0 everywhere.

As Φ is defined by the Heaviside-like level set function between 0 and 1 in this research, and

interface is defined by the iso-contour line Φ = 0.5, the following double-well potential is

used in this work:

f(Φ̂) = 16a(Φ̂− 0.5)4 − 8a(Φ̂− 0.5)2 + a+ ε , (6.34)

where a is an amplitude and ε is a shifted parameter which is much smaller than a. In

this work, a = 10 and ε = 0.001 are used. (6.34) is equivalent to the following variational

problem:

Rϕ =

∫
ΩE

dΩ δϕf(Φ̂)

(
ϕ(x)− Φ̂(X +U)

)
= 0 . (6.35)

To compute (6.35), integration points are defined in ΩE at first. Then, a corresponding point

in ΩL of each integration point in ΩE is detected. Finally, Φ̂ is evaluated at the detected

point in ΩL and used in (6.35).

Figure 6.5: Level set projection
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6.4 Finite Element Discretization of Lagrangian-Immersed FSI Method using

XFEM

This section summarizes the finite element discretization of the FSI-contact problem

based on the Lagrangian-immersed FSI method, considering two-dimensional problems. The

entire computational domain Ω is the union of the Eulerian and Lagrangian system: Ω =

ΩE ∪ΩL and discretized spatially by bilinear QUAD4 elements. The temporal discretization

is performed by the Newmark method with Γ = 0.9 and β = 0.5. Given a trial function

space Sh and an admissible test function space Vh (lower subscript 0 denotes a space in the

initial configuration):

Trial functions: {U s,V s,U d} ∈ Sh
0 , {vf , pf , ϕ} ∈ Sh , (6.36)

Test functions: {δU s, δV s, δU d} ∈ Vh
0 , {δvf , δpf , δϕ} ∈ Vh, (6.37)

the variational form of the FSI-contact problem using a compressible material for the solid

phase is as follows:

Rs
m(δU

s; {U s,V s}) +Rs
uv(δV

s; {U s,V s}) +Rd
u(δU

d; {U s,U d}) +Rs
c(δU

s;U s)

+Rf
m({δvf , δpf}; {vf , pf , ϕ}) +Rϕ(δϕ; {ϕ, Φ̂})

+Rfsi
L (δU s; {U s,V s,vf , pf , ϕ}) +Rfsi

E ({δvf , δpf}; {U s,V s,vf , pf , ϕ})

+Rgp
L ({δU s, δV s, δU d}; {U s,V s,U d}) +Rgp

E ({δvf , δpf}; {vf , pf}) = 0 . (6.38)

This section discusses the individual terms of (6.38) except the variational form of the

stabilization terms Rgp
L and Rgp

E , for which details are provided in Section 6.5.3.

First, Rs
m, R

s
uv and Rd

u are defined in the undeformed Lagrangian system ΩL0 and on the

corresponding undeformed Lagrangian interface ΓL0. R
s
m are Rs

uv are the variational form of

the solid momentum equation (6.7) and the displacement-velocity relationship (6.8) in the

solid phase of the initial configuration ΩS0. The test functions associated with Rs
m and Rs

uv
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are δU s
i , δV

s
i and δUd

i respectively. The detailed forms of Rs
m and Rs

uv are defined as follows:

Rs
m =

∫
ΩS0

dΩ δU s
i ρ

s

(
∂V s

i

∂t
+ αsV s

i −Bs
i

)
+

∫
ΩS0

dΩ
∂δU s

i

∂XJ

Πs
iJ(U

s) , (6.39)

Rs
uv =

∫
ΩS0

dΩ δV s
i ρ

s

(
∂U s

i

∂t
− V s

i

)
. (6.40)

Second, Rd
u is the variational form of the governing equation in the dummy displacement

domain ΩD0. Based on the Helmholtz smoothing method, the Helmholtz equation (6.9) for

the dummy displacement outside of the solid phase ΩD0 and the continuity condition of U s
i

and Ud
i (6.10) on the undeformed Lagrangian interface ΓL0 based on the one-sided Nitsche

method are included in this weak form:

Rd
u =

∫
ΩD0

dΩ
∂δUd

i

∂XJ

ρd
∂Ud

i

∂XJ

+

∫
ΩD0

dΩ δUd
i ρ

dUd
i

−
∫
ΓL0

dΓ δUd
i ρ

d ∂U
d
i

∂XJ

nd
L0J +

∫
ΓL0

dΓ δUd
i ρ

dηd(U s
i − Ud

i ) , (6.41)

where ηd is the Nitsche penalty factor for the displacement continuity condition of the La-

grangian system. Based on the dummy solid method, the dummy momentum equation (6.11)

and the dummy displacement-velocity relationship (6.12) determine Rd
u, using the one-sided

Nitsche method as follows:

Rd
u =

∫
ΩD0

dΩ δUd
i ρ

d

(
∂V d

i

∂t
+ αdV d

i −Bd
i

)
+

∫
ΩD0

dΩ
∂δUd

i

∂XJ

Πd
iJ(U

d)

+

∫
ΩD0

dΩ δV d
i ρ

d

(
∂Ud

i

∂t
− V d

i

)
−
∫
ΓL0

dΓ δUd
i {ΠiJ}ns→d

L0J

−
∫
ΓL0

dΓ Πd
iJ(δU

d)ns→d
L0J (U

s
i − Ud

i ) +

∫
ΓL0

dΓ δUd
i ρ

dηd(U s
i − Ud

i ) , (6.42)

where {ΠiJ} is the weighted average of the first PK stress and the modulus weighting is used

in (6.42); see Section 5.5.2. As the modulus weighting is identical to the equal weighting

because Young’s moduli of the solid and void phases are identical. In general, the weighting

proposed by [100], which is used in the contact formulation in this research, works more

stably than the other weighting strategies. But no issue is observed by using the modulus
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weighting in (6.42) in this research.

Third, Rs
c denotes the variational form of the contact formulation, which is an interface

integral between two different solid bodies in ΩL. Rs
c is performed on the interface of a

master body in the initial configuration Γc0:

Rs
c =

∫
Γc0

dΓ δg0nλ
0 , (6.43)

where δg0n is the variation of the normal gap in the initial Lagrangian system and λ0 is

governed by the following equation based on the stabilized Lagrange multiplier method

(Section 6.2.4):

Rs
λ =

∫
Γc0

dΓ δλ0(λ0 − λ̃0 − γcg0n) , (6.44)

where the definition of λ̃0 is given by (6.27). λ0 is computed outside of the monolithic

FSI-contact solver and defined elementwise. Detailed discussions about contact and how to

compute λ0 are summarized in Appendix D.

Fourth, Rf
m, and Rϕ are defined in the Eulerian system ΩE and on the corresponding

interface ΓE in the current configuration. Rf
m is the variational form of volume contribution

of the fluid momentum equation (6.2) and the continuity equation (6.3) in the fluid phase

of the current configuration ΩF:

Rf
m =

∫
ΩF

dΩ δvfi ρ
f

(
∂vfi
∂t

+ vfj
∂vfi
∂xj
− bfi

)
+

∫
ΩF

dΩ
∂δvfi
∂xj

σf
ij(v

f , pf )

+

∫
ΩF

dΩ δpf
∂vfi
∂xi

+
∑
e∈ΩF

∫
ΩFe

dΩ

(
τ fmv

f
j

∂δvfi
∂xj

+
τ fm
ρf
∂δpf

∂xi

)
r̃fi

+
∑
e∈ΩF

∫
ΩFe

dΩ τ fc
∂δvfi
∂xi

∂vfj
∂xj

, (6.45)

where
∫
ΩFe

denotes a volume integral over an elemental volume of the fluid ΩFe (ΩFe ∈ ΩF),

and r̃fi is a scalar residual of the momentum equation of the incompressible Navier-Stokes
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fluid:

r̃fi = ρf
∂vfi
∂t

+ ρfvfj
∂vfi
∂xj
−
∂σf

ij(v
f , pf )

∂xj
− ρfbfi . (6.46)

In (6.45), terms without summation symbol are the standard Galerkin terms, other terms

are the stabilization terms for the convection and the incompressibility. Here, the residual-

based variational multiscale (VMS) method is used to suppress the numerical instability due

to convection and incompressibility, and τ fm and τ fc are the stabilization parameters of the

VMS method for the momentum and continuity equations respectively:

τ fm =

[(
2ρf

∆t

)2

+ (ρfvf )TG(ρfvf ) + µf 2G : G

]−1/2

, (6.47)

τ fc =

[
τ fmTr(G)

]−1

, (6.48)

where Gij =
∑2

k=1(∂ξk/∂xi)(∂ξk/xj) and ξk is the isoparametric coordinate of each element.

τ fm and τ fc correspond to parameters of SUPG/PSPG and LSIC stabilizations, respectively.

Rϕ is the variational form of the level set projection using a weighted projection method

(6.35):

Rϕ =

∫
ΩE

dΩ δϕf(Φ̂)(ϕ− Φ̂) . (6.49)

This projection is performed in the entire Eulerian system ΩE to capture the accurate inter-

face for the fluid phase.

Finally, Rfsi
L and Rfsi

E are the FSI contributions of the solid and fluid momentum equations;

(6.7) and (6.2), based on Nitsche’s method. Using the master-slave concept described in

Section 6.2.3, boundary integrals of FSI are performed on the master (Eulerian) interface ΓE.

Rfsi
L is the FSI contribution for the Lagrangian interface ΓL and Rfsi

E is the FSI contribution

for the Eulerian interface ΓE:

Rfsi
L =−

∫
ΓE

dΓ δU s
i {σij}fsin

s→f
Lj +

∫
ΓE

dΓ δU s
i η

fsi
(
V̂ s
i

∣∣
ΓL
− vfi

)
, (6.50)
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Rfsi
E =

∫
ΓE

dΓ δvfi {σij}fsin
s→f
Ej −

∫
ΓE

dΓ σf
ij(δv

fδpf )ns→f
Ej ,

(
V̂ s
i

∣∣
ΓL
− vfi

)
−
∫
ΓE

dΓ δvfi η
fsi
(
V̂ s
i

∣∣
ΓL
− vfi

)
. (6.51)

Here, {σij}fsi is the weighted average of the Cauchy stress of solid and fluid phase and defined

as follows:

{σij}fsi = κsσs
ij(U

s) + κfσf
ij(v

f , pf ) , (6.52)

where κs and κf are weights for the solid and fluid stresses. In this research, the following

weighting strategy based on the shear modulus is used:

κs =
Gf

Gs +Gf
, (6.53)

κf =
Gs

Gs +Gf
, (6.54)

where Gs is the shear modulus of a solid phase and Gf is the effective shear modulus of a

fluid phase:

Gs =
Es

2(1 + νs)
, (6.55)

Gf = cf
µf

∆t
. (6.56)

In (6.55), Es and νs are the Young’s modulus and the Poisson’s ration of a solid phase.

In (6.56), µf is the dynamic viscosity of a fluid phase, ∆t is the time increment and cf

is a scaling coefficient. As µf/∆t is much smaller than Gs, cf = 100 in this thesis. In

general, κf ≫ κs. Therefore, the traction from the fluid side is the dominant contribution

of the traction used at the interface integrals. This treatment is similar to the traditional

weighting strategy (κf = 1, κs = 0); see discussions in Section 5.8.3.

The first term of RHS of (6.50) and (6.51) is called as the standard consistency term.

The second term of RHS of (6.51) is called as the adjoint consistency term. In this adjoint

consistency term, the traditional weighting strategy (κf = 1, κs = 0) is applied for the sim-
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plicity because κf ≫ κs based on the weighting strategy in this research: (6.53) and (6.54).

The last term of RHS of (6.50) and (6.51) is called as the Nitsche penalty term. Detailed

discussion of Nitsche’s method for the Lagrangian-immersed FSI method is summarized in

Appendix C.

6.5 Numerical Implementation

This section discusses the details of the numerical implementation. The overall procedure

of Newton iteration used in this method is summarized in Algorithm 1. The FSI problem

described above is solved numerically by Algorithm 1 assuming a time step n+1 (time tn+1).

Algorithm 1 Newton solver for the Lagrangian-immersed FSI method using XFEM (time
step n+ 1: tn+1)

for k ← 1 to (maximum Newton iteration) do
(1) Compute global residual and Jacobian: Rn+1

(k+1) and J
n+1
(k+1)

(2) Compute relative norm of current residual against the initial residual
rn+1
(k+1) = ∥R

n+1
(k+1)∥/∥R

n+1
(1) ∥

(3) Solve incremental solution at current Newton iteration

∆un+1
(k+1) = −

(
Jn+1
(k+1)

)−1
Rn+1

(k+1)

(4) Update solution vector
un+1

(k+1) = un+1
(k) +∆un+1

(k+1)

(5) Perform correction of level set projection
if rn+1

(k+1) ≥ 0.1 then

(5-a) Define residual and Jacobian only for level set projection: Rpost
ϕ and Jpost

ϕ

(5-b) Update level set function

∆ϕpost = −
(
Jpost
ϕ

)−1
Rpost

ϕ and ϕn+1
(k+1) = ϕn+1

(k+1) +∆ϕpost

end if

(6) Check convergence criterion
if rn+1

(k+1) < (convergence criterion) then
exit

end if
end for
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6.5.1 Correction of Level Set Projection

A key component within Newton iteration (Algorithm 1) is the correction of the level set

projection after the update of solution vector at Step (5) of Algorithm 1. The correction of

level set projection is performed when the relative norm of the residual with respect to the

initial residual is larger than 10−1.

The purpose of the correction of the level set projection is the correction of the updated

Eulerian interface ΓE at the early stage of the Newton iteration. Figure 6.6 is an image of

Lagrangian interface ΓL and Eulerian interface ΓE at the early stage of the Newton iteration.

Figure 6.6 (a) shows the first iteration of the Newton iteration. At the first iteration, both

ΓL and ΓE coincide because solution s at the first iteration is the converged solution at the

previous time step n (time tn). Figure 6.6 (b) shows the state just after the update of the

solution vector in Step (4) of Algorithm 1. At this time, ΓE does not move because the

residual of the level set projection in Step (a) is zero. On the other hand, ΓL moves due to

the updated solid displacements. If the correction step (5) of Algorithm 1 is omitted, the

FSI system is built in Step (1) and solved in Step (2) using the geometries of the previous

iteration. This can lead to a large discrepancy between interfaces and slow convergence of

Newton iterations. To accelerate the convergence of the Newton solver, the correction of the

level set projection is introduced. Therefore, ΓE and ΓL coincide at the beginning of each

Newton iteration. The errors associated with the mismatch of the interface geometries in

the Lagrangian and Eulerian meshes are reduced, and a fast convergence is achieved.

Figure 6.6: Correction of level set projection (early stage of Newton iteration)
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6.5.2 Structure of Jacobian

The blocks of the Jacobian (tangential stiffness) corresponding to the weak form (6.38) of

the Lagrangian-immersed FSI method using the XFEM are shown in Figure 6.7 (u denotes

the entire state variables). When the norm of the residual is larger than 10−1 relative to the

norm of the initial residual, an approximate Jacobian, which omits the blue terms in Figure

6.7, is used to solve the system in Step (2) of Algorithm 1. Otherwise, the consistent Jacobian

which is the same as shown in Figure 6.7 is used in the Newton iteration. This is because the

correction of the level set projection described in Section 6.5.1 is applied when the relative

norm of the residual is larger than 10−1, and the blue terms are no more consistent when the

correction of the level set projection is applied. In this case, an approximate computation

with respect to the level set function should be used, and the computational cost can be

reduced by omitting the contribution of blue terms in Figure 6.7. As the location of interfaces

at the early stage of the Newton iteration may significantly differ from the converged solution.

The blue terms (off-diagonal terms) of the consistent Jacobian sometimes cause the Newton

iteration to diverge. Therefore, the usage of the consistent Jacobian should be avoided at

the early stage of the Newton iteration.

Figure 6.7: Broad structure of Jacobian (Lagrangian-immersed FSI using XFEM)



www.manaraa.com

140

6.5.3 Face-Oriented Ghost-Penalty Method

As the geometry of the solid and fluid domains is described by the level set function in

the XFEM, the XFEM procedure usually creates intersection configurations where certain

degrees of freedom interpolate in very small subdomains. These small subdomains produce an

ill-conditioning problem, which leads an increase in the condition number of the Jacobian,

and may slow-down of the convergence or cause divergence of the Newton iteration. In

particular, as the Lagrangian-immersed FSI analysis treats the Eulerian interface as a moving

interface projected by the level set projection method (Section 6.3), numerical instability due

to small intersection configuration has a large impact.

To mitigate this ill-conditioning problem, the face-oriented ghost-penalty method is ap-

plied in this work. This ghost-penalty method is applied at the faces of intersected elements.

A face in the Lagrangian mesh of the initial configuration is denoted as ΓLgp0. A face in the

Eulerian mesh is denoted as ΓEgp. The variational forms of the face-oriented ghost-penalty

method on ΓLgp0 and ΓEgp are defined as follows:

Rgp
L =Rgp

LUs(δU s;U s) +Rgp
LV s(δV s;V s) +Rgp

LUd(δU
d;U d) , (6.57)

Rgp
E =Rgp

Evf
(δvf ;vf ) +Rgp

Epf
(δpf ; pf ) . (6.58)

The continuity of fluxes is enforced on the elemental faces by penalizing the jump of fluxes.

The contribution of the velocity and the pressure is to suppress numerical instability by

considering the associated fluxes across the elemental face:

Rgp
LV s =

∫
ΓLgp0

dΩ

[[
∂δV s

i

∂XJ

]]
gp

ngp
L0J η

gp
V s

[[
∂V s

i

∂XK

]]
gp

ngp
L0K , (6.59)

Rgp
Evf

=

∫
ΓEgp

dΩ

[[
∂δvfi
∂xj

]]
gp

ngp
Ej η

gp
vf

[[
∂vfi
∂xk

]]
gp

ngp
Ek , (6.60)

Rgp
Epf

=

∫
ΓEgp

dΩ

[[
∂δpf

∂xi

]]
gp

ngp
Ei η

gp
pf

[[
∂pf

∂xj

]]
gp

ngp
Ej , (6.61)
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where the jump operator for the face-oriented ghost-penalty method [[·]]gp is defined as:

[[a]]gp = a
∣∣
Ω1

e
− a

∣∣
Ω2

e
, (6.62)

and evaluated at the face between two adjacent elements Ω1
e and Ω2

e intersected by ΓLgp0

or ΓEgp. In the face-oriented ghost-penalty method, the jump terms are integrated over the

entire face, individually for each phase that is considered. The face-oriented ghost-penalty

method for displacements is defined by the minimization of the jump in the first PK stress

on the elemental faces [75]. Applying the following variational forms, the continuity of the

stress field is weakly enforced, even if there is a tiny intersected element:

Rgp
LUs =

∫
ΓLgp0

dΓ

[[
∂δU s

i

∂XJ

]]
gp

ngp
L0J η

gp
Us [[Πs

iK ]]gpn
gp
L0K , (6.63)

Rgp
LUd =

∫
ΓLgp0

dΓ

[[
∂δUd

i

∂XJ

]]
gp

ngp
L0J η

gp
Ud [[Π

d
iK ]]gpn

gp
L0K , (6.64)

where Πs
iJ denotes the first Piola-Kirchhoff stress tensor of the solid phase. While there is

no physical solid material in the dummy displacement domain ΩD0, the dummy second PK

stress Πd
iJ is assumed by the same material constitutive law as the solid phase.

ηgpUs , η
gp
V s , η

gp
Ud , η

gp
vf

and ηgp
pf

are the penalty factors of the ghost penalty method. Following

the works of Burman et al. [105], Schott et al. [72], Lawry et al. [75] and Villanueva et al.

[106], these penalty factors are defined as follows:

ηgpUs =α
gp
Ush , (6.65)

ηgpV s =α
gp
V shGs , (6.66)

ηgp
Ud =α

gp
Udh , (6.67)

ηgp
vf

=αgp
vf
hµf , (6.68)

ηgp
pf

=αgp
pf
h2
(
µf

h
+
ρf ||vf ||∞

6

)−1

, (6.69)

where h is a representative elemental length, µf is a dynamic viscosity of fluid and Gs is a

representative shear modulus of solid. || · ||∞ denotes an infinity norm, which extracts the



www.manaraa.com

142

maximum amplitude from a vector:

||a||∞ ≡ max(|a1|, |a2|, · · · , |an|) for n dimension vector (6.70)

The penalty factor for the pressure term is to control instability of the pressure considering

the inf-sup condition of equal-order approximation for velocity and pressure [72]. αGP
v , αGP

p ,

αGP
V , αGP

P and αGP
U are constant scaling factors. The typical value of these scaling factor is

from 0.001 to 0.05.

Figure 6.8: Faces for face-oriented ghost-penalty method: ΓLgp0 and ΓEgp
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6.6 Numerical Examples

This section studies four numerical examples of the Lagrangian-immersed FSI method

using the XFEM and the time stepping scheme. The first and second examples are steady-

state FSI problems. These examples demonstrate the capability of the Lagrangian-immersed

FSI method for the steady-state FSI problems. The third example is a transient structural

problem including multibody contact and this example is a preliminary example for a FSI-

contact problem. The fourth example is a transient FSI-contact problem.

In these examples, the plane strain case is assumed. In the first example, a solid structure

is made by an isotropic linear elastic material. In the other examples, the solid objects are

made by a neo-Hookean material (Belytschko et al. [107]):

W s =
1

2
λs
(
ln(detF s)

)2
+

1

2
µs(Tr(Cs)− 3)− µs ln(detF s) , (6.71)

Ss
IJ =2

∂W

∂Cs
IJ

=
(
λs ln(detF s)− µs

)
Cs−1

IJ + µsδIJ . (6.72)

Here, W s is the hyperelastic function of the neo-Hookean material, F s is the deformation

gradient tensor, Cs is the right Cauchy-Green tensor (Cs = F sTF s), Ss is the second Piola-

Kirchhoff stress tensor, and λs and µs are the Lamé’s constants defined as follows:

λs =
νs

(1 + νs)(1− 2νs)
Es , (6.73)

µs =
1

2(1 + νs)
Es , (6.74)

where Es is the Young’s modulus and νs is the Poisson’s ratio.

6.6.1 Stationary Beam in a Fluid Channel (COMSOL Benchmark Problem)

The first numerical example is a stationary beam in a fluid channel and focuses on

the steady-state response of a fluid-structure interaction problem. This example is one of

the benchmark problems of the commercial software COMSOL Multiphysics [108] and also
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studied in the Ph.D. thesis of Jenkins [109]. The geometry of this numerical example is

shown in Figure 6.9 and the problem parameters are listed in Table 6.1.

Figure 6.9: System of COMSOL benchmark problem

Table 6.1: Parameters of COMSOL benchmark problem
Group Description Parameter

Geometry system length in x Lx = 300µm
system length in y Ly = 100µm
distance of a beam from the origin Lb = 100µm
beam thickness D = 5µm
diameter of hemisphere at the tip of a beam D = 5µm
beam height H = 47.5µm

Solid density ρs = 1000kg/m3

Young’s modulus Es = 200kPa
Poisson’s ratio νs = 0.33
body force Bs = (0, 0)m/s2

artificial viscosity αs = 0kg/s
Fluid density ρf = 1000kg/m3

Reynolds number Re = 1.5
kinematic viscosity νf = 10−6m2/s
body force bf = (0, 0)m/s2

mean inflow velocity Ū = 0.0333m/s

The beam is made by an isotropic linear elastic material and immersed in the fluid

domain. Fixed Dirichlet boundary conditions are applied at the bottom of this beam Γs
dbc:

U s
x = U s

y = 0, V s
x = V s

y = 0 on Γs
dbc . (6.75)
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The fluid domain has a parabolic inlet flow at Γf
inlet and a traction free outlet condition is

prescribed at Γf
free. The no-slip boundary condition Γf

noslip is applied to the upper and lower

edges of the fluid domain:

vfx(0, y) = 6Ū
y(H − y)

H2
, vfy = 0 on Γf

inlet , (6.76)

vfx = vfy = 0 on Γf
noslip . (6.77)

This benchmark problem only focuses on a steady-state solution of a FSI system. There-

fore, this example uses an one-step time integration based on the BDF1 method with a

large time increment (∆t = 1020s). The weak form of this system is as follows (details are

described in Section 6.4):

Rs
m(δU

s; {U s,V s}) +Rs
uv(δV

s; {U s,V s}) +Rd
u(δU

d; {U s,U d})

+Rf
m({δvf , δpf}; {vf , pf}) +Rϕ(δϕ; {ϕ, Φ̂})

+Rfsi
L (δU s; {U s,V s,vf , pf}) +Rfsi

E ({δvf , δpf}; {U s,V s,vf , pf})

+Rgp
L ({δU s, δV s, δU d}; {U s,V s,U d}) +Rgp

E ({δvf , δpf}; {vf , pf}) = 0 . (6.78)

Rd
u is a residual of the dummy displacement domain ΩD and Rd

u in this example is defined by

the Helmholtz smoothing method. As there is only one solid structure, the contact residual

Rs
c is not included in this case. Newton’s method using a direct solver is used and the

convergence criterion requires a drop of the norm of the residual of 10−6 relative to the norm

of the initial residual.

The COMSOL benchmark problem [108] uses the moving mesh using the ALE-FSI

method (ALE-FSI with remeshing). Jenkins [109] uses the ALE-FSI method without remesh-

ing. [109] compares the body-fitted modeling and the immersed boundary modeling using

the ALE-FSI method. Table 6.2 summarizes the computational results for different spatial

discretization sizes h and reference solutions. Comparing the finest model of the current work

(Model 3) and reference works, the maximum von Mises stress of a solid beam is slightly
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larger than reference works. The tip displacement U s
x in x direction and the norm of the

fluid velocity ∥vf∥ of Model 3 are also larger than the reference works.

Table 6.2: Computational results of COMSOL stationary benchmark problem
Model h U s

x at beam tip max(σs
VM) max(∥vf∥)

(µm) (µm) (mPa) (m/s)

Model 1 (∆t = 1020s) 1.333 9.662 6.190 0.0875
Model 2 (∆t = 1020s) 1.075 10.390 6.782 0.0919
Model 3 (∆t = 1020s) 0.954 10.960 6.838 0.0922
COMSOL, moving mesh - 8.388 6.480 0.0884
Jenkins, body-fitted mesh - 8.088 6.158 0.0628
Jenkins, immersed boundary - 8.113 6.201 0.0624

Figure 6.10: Steady-state result of COMSOL benchmark problem
(solid displacement in x: U s

x and norm of fluid velocity |vf |)

Figure 6.10 shows the steady-state result of Model 3 defined in Table 6.2. The region

with the mesh superimposed is the deformed solid domain ΩS. The color of a meshed

region shows the solid displacement in x-direction; U s
x. The other region is the fluid domain.

The color in this region represents the norm of the fluid velocity ∥vf∥. The Lagrangian

solid is deflected by the parabolic channel flow and the Eulerian fluid field is affected by

the solid structure simultaneously. Figure 6.11 shows non-matching interfaces around a

tip of the solid beam. The region colored by gray is the deformed solid domain ΩS based
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Figure 6.11: Non-matching interfaces

on the Lagrangian description and the outside of ΩS is a fluid domain ΩF based on the

Eulerian description. As the Lagrangian-immersed FSI method uses separate non-matching

interfaces of the Lagrangian and Eulerian mesh, gaps between a Lagrangian interface ΓL and

an Eulerian interface ΓE always exist. This gap can be reduced by refining the mesh size

because the accuracy of the level set projection increases.

Figure 6.12: Deformation of fluid domain at reference work (Jenkins [109])
(Left: Deformed body-fitted ALE meshes with pressure contours)
(Right: Deformed immersed ALE meshes with pressure contours)

The reason why the Lagrangian-immersed FSI method achieved larger deformation than

reference works is primarily related to the description of fluid meshes. Figure 6.12 shows

examples of the work of Jenkins [109] using the ALE-FSI method without remeshing; the left
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Figure 6.13: Distribution of fluid pressure around a tip
(Corresponding to Figure 6.12)

figure is the result using body-fitted meshes and the right figure is the one using the immersed

boundaries. The color shows the fluid pressure and white lines are its iso-contours. The black

domain represents a solid beam. Based on the ALE formulation, fluid meshes around the

tip of a beam deforms significantly by following the deformation of a beam. In particular,

the fluid meshes using the immersed boundary method (right figure of Figure 6.12) deform

significantly. While the ALE formulation does not influence the deformation of the solid

structures, the ALE formulation suffers from the limits of the deformation of the fluid mesh

to avoid negative determinants of Jacobians of fluid elements. The deformation of the fluid

mesh tends to degrade the accuracy of the flow solution if a large deformation occurs in the

fluid mesh.

The results of Jenkins [109], computed the smallest tip displacement and the von Mises

stress in Table 6.2. In addition, the maximum of the norm of the fluid velocity at Jenkins

[109], max(∥vf∥) is much smaller than this work and COMSOL. This fact might be related

to the above discussion of the limit of the ALE formulation. In the result of COMSOL, the

limitation of deformation of fluid meshes is moderated by remeshing and this may lead to
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the larger deformation of the solid beam than Jenkins [109] (ALE-FSI without remeshing).

Figure 6.13 shows the result using the Lagrangian-immersed FSI method that corresponds

to Figure 6.12. The color shows the fluid pressure and white lines are its iso-contours. The

shape of the fluid meshes around the tip of the solid beam differs noticeably. As the fluid

domain of the Lagrangian-immersed FSI method is defined by the Eulerian description, the

shape of fluid meshes is always fixed. In addition, the FSI boundary integral is computed

on non-matching interfaces located in separate meshes. As the solid structure and the fluid

phase are completely separate, this geometric feature also enhances the deformability of the

FSI system. Therefore, the larger deformation is allowed than in the other reference works

of Table 6.13.

Figure 6.14: Deformation of a Lagrangian mesh
(Left: Solid Displacement in x U s

x, Right: Von Mises Stress σs
vm)

The Lagrangian system in the Lagrangian-immersed FSI method consists of the solid

phase and the dummy displacement phase. Figure 6.14 illustrates the deformed solid phase

ΩS and the deformed dummy displacement phase ΩD. White lines show the interface between
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the solid and dummy displacement phase, and this interface should correspond to the Eule-

rian interface by the level set projection. ΩD is driven by the Helmholtz smoothing method

in this example. As shown in Figure 6.14, the continuity of the displacements across the

interface in the Lagrangian domain (the white line) is guaranteed by the one-sided Nitsche

method; see (6.41). The smooth deformation of the Lagrangian mesh like Figure 6.14 is

needed for the accurate level set projection and FSI on non-matching interfaces.

6.6.2 Stationary Beam in a Fluid Channel with Body Force

The second numerical example is also a steady-state FSI problem but the finite strain

theory and body forces are applied to the solid phase. A beam structure made by the neo-

Hookean material defined in (6.71) - (6.74) is pinned within the fluid channel. This geometry

of this example is identical to an example of the full-Eulerian FSI method summarized in

Section 5.9. The geometry and material parameters of this numerical example are shown in

Figure 6.15 and given in Table 6.3.

Figure 6.15: System of stationary beam with body force



www.manaraa.com

151

Table 6.3: Parameters of stationary beam with body force
Group Description Parameter

Geometry system length in x Lx = 17.2m
system length in y Ly = 3.94m
distance of a beam from the origin A = 1.97m
beam width w = 3m
center position of beam in y H = 2.30m
radius of hemisphere at the tip of beam r = 0.5m

Solid density ρs = 1000kg/m3

Young’s modulus Es = 300kPa
Poisson’s ratio νs = 0.49
body force Bs = (0,−3)m/s2

artificial viscosity αs = 1s−1

Fluid density ρf = 1000kg/m3

Reynolds number Re = 10
kinematic viscosity νf = 0.1m2/s
body force bf = (0, 0)m/s2

mean inflow velocity Ū = 1m/s

In Figure 6.15, a solid beam consists of ΩS and Ωdbc (black domain in Figure 6.15) where

the Dirichlet boundary conditions are applied:

U s
x = U s

y = 0, V s
x = V s

y = 0 in Ωdbc . (6.79)

The fluid domain has a parabolic inlet flow at Γf
inlet and a traction free outlet condition is

applied at Γf
free. No-slip boundary conditions are applied at the upper and lower edges Γf

noslip:

vfx(0, y) = 6Ū
y(H − y)

H2
, vfy (0, y) = 0 on Γinlet (6.80)

vfx = vfy = 0 on Γnoslip (6.81)

The weak form of this system is identical to the one of the previous numerical example. In the

dummy displacement domain, the Helmholtz smoothing method is used. As this numerical

example also focuses on a steady-state solution, this computation is an one-step BDF1 time

integration method with a large time increment (∆t = 104s). Newton’s method with a direct

solver is used and the convergence criterion requires a drop of the norm of the residual of
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10−6 relative to the norm of the initial residual. The weak form of the governing equations

is identical to the one of the previous example; (6.78), but the solid model is different and

the body force is applied in this example.

Figure 6.16 shows the geometry of the solid and fluid meshes in the deformed config-

uration. FSI is considered between the non-matching Lagrangian and Eulerian interfaces:

ΓL and ΓE. In this numerical example, the models listed in Table 6.4 are studied and the

convergence study is analyzed via these models.

Figure 6.16: Mesh of stationary beam with body force

Table 6.4: Models of numerical example 2 of Lagrangian-immersed FSI using XFEM
Model Number of Nodes Spatial Discretization h (m)

1 2125 0.1971
2 2125 0.1314

Model for Figures 6.17 - 6.19 3 4699 0.1095
4 5781 0.0986
5 7614 0.0857

Reference 6 7614 0.0788
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Figure 6.17: Steady-state velocity distribution (Model 3 of Table 6.4)
(Solid: Mesh, Fluid: Surface)

Figure 6.18: Fluid pressure and vorticity (Model 3 of Table 6.4)
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Figure 6.19: Solid displacement and von Mises stress (Model 3 of Table 6.4)

The results for Model 3 in Table 6.4 are shown in Figures 6.17 - 6.19. Figure 6.17 shows

the velocity distributions of both the solid and fluid phases. V s
i and vfi denote the velocity of

the solid and the fluid, respectively. The solid beam deforms by the body force in y direction,

and the fluid flow fits to the deformed solid structure. The results show that the continuity

of the solid and fluid velocity is satisfied. Figure 6.18 shows the following fluid quantities:

the fluid pressure pf and the fluid vorticity in z direction; ωf
z . Figure 6.19 illustrates the solid

displacements; U s
x and U s

y , and the von Mises stress σs
VM (Cauchy stress). As the Lagrangian

description is used for the solid phase, deformable meshes are used for the solid structure.

As it is described above, this numerical example is similar to the numerical example of

the full-Eulerian FSI method described in Section 5.9. The advantage of the Lagrangian-

immersed FSI method over the full-Eulerian FSI method is the ability to compute a steady-

state problem using a single time step with a large time increment ∆t. The representation
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of a deformed solid structure in the full-Eulerian FSI method is based on the propagation

of the level set function (CLSF method) in time. Therefore, the full-Eulerian FSI method

needs to use much smaller time increments ∆t = 0.005s than the Lagrangian-immersed FSI

method (∆t = 104s), and multiple time steps are necessary for the computation based on

the full-Eulerian FSI method. On the other hand, it is easy to obtain an accurate solid

structure using the Lagrangian-immersed FSI method with a large time increment because

the Lagrangian description is used for the solid phase. The steady-state solutions can be

easily computed by the Lagrangian-immersed FSI method, similar to the conventional ALE-

FSI method.

Using the models described in Table 6.4, the convergence of the L2 error of characteristic

physical quantities are studied. The reference solutions are computed with Model 6 in Table

6.4. Evaluated L2 errors of the solid phase are as follows:

Err(V s) =

√∫
ΩS
dΩ ∥V s − V s

ref∥2∫
ΩS
dΩ ∥V s

ref∥2
, (6.82)

Err(U s) =

√∫
ΩS
dΩ ∥U s −U s

ref∥2∫
ΩS
dΩ ∥U s

ref∥2
, (6.83)

Err(σs
VM) =

√∫
ΩS
dΩ (σs

VM − σs
VM-ref)

2∫
ΩS
dΩ σs

VM-ref
2 , (6.84)

where V s, U s and σs
VM are the displacements, the velocities and the von Mises stress (Cauchy

stress) of the solid phase ΩS, respectively. The L2 errors of the fluid phase are as follows:

Err(vf ) =

√√√√∫
ΩF
dΩ ∥vf − vv

ref∥2∫
ΩF
dΩ ∥vf

ref∥2
, (6.85)

Err(pf ) =

√√√√∫
ΩE
dΩ (pf − pfref)2∫
ΩF
dΩ pfref

2 , (6.86)

Err(qf ) =

√√√√∫
ΩE
dΩ (qf − qfref)2∫
ΩF
dΩ qfref

2 , (6.87)

where vf and pf are the velocity and the pressure of the fluid phase ΩF. q
f is the in-plane
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effective shear stress defined by principal stresses σf
1 and σf

2 ; q
f = |σ1 − σ2|/2, which is a

similar measure as the von Mises stress of the solid phase. Figure 6.20 shows the comparison

of the L2 errors of the velocity and the stress measures. Red markers represent the solid

quantities and blue markers represent the fluid quantities. The rates of convergence are

computed by the least square fitting and both dashed lines represents the fitted data of the

solid (red) and the fluid (blue), respectively.

Figure 6.20: L2 error of velocity and stress

Figure 6.21: L2 error of solid displacement and fluid pressure

Both the solid and fluid velocity have similar rates of convergence (left figure). In terms of
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stress measures (right figure), the solid phase has lower convergence rate than the fluid phase

in this example. Figure 6.21 illustrates the L2 errors of the fluid pressure pf and the solid

displacement U s. Figure 6.22 shows a comparison of the L2 errors of the level set function

in both the Lagrangian and Eulerian systems. Φ is the level set function in the undeformed

Lagrangian system ΩL0 and the purpose of this Φ is to describe the initial solid structures. ϕ

is the level set function in the Eulerian system ΩE. ϕ is defined by the projection of Φ based

on the level set projection method (Section 6.3) and the interface used in the FSI boundary

integral ΓE is determined by the iso-contour of ϕ. The L2 error of Φ is defined in the entire

Lagrangian system ΩL and the L2 error of ϕ is defined in the entire Eulerian system ΩE as

follows:

Err(Φ) =

√√√√∫
ΩL
dΩ (Φ− Φref)2∫
ΩL
dΩ Φref

2 , (6.88)

Err(ϕ) =

√√√√∫
ΩE
dΩ (ϕ− ϕref)2∫
ΩE
dΩ ϕref

2 . (6.89)

Figure 6.22: L2 error of level set function
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The L2 error of Φ: Err(Φ) purely indicates the difference in initial designs of the solid

beam. The difference of the L2 error of ϕ: Err(ϕ) reflects the accuracy of the level set

projection. As can be seen from Figure 6.22, Err(ϕ) and Err(Φ) overlap and the rates of

convergence of both L2 errors are almost identical; i.e. a factor of around 2.3. These results

suggest that the level set projection method performs well in the Lagrangian-immersed FSI

method.

6.6.3 Transient Structural Problem with Multibody Contact

The third numerical example is a transient structural problem with multi-body contact.

This example studies the characteristics of the stabilized Lagrangian contact formulation

(Section 6.2.4) in a transient problem. In this numerical example, three elastic circular solid

objects (solid 1, 2 and 3) exist within an elastic ring solid object (solid 4) and they are made

by the neo-Hookean material (6.71) - (6.74). The initial geometry and material parameters

are shown in Figure 6.23 and listed in Table 6.5.

Figure 6.23: Model of transient contact problem
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Table 6.5: parameters of multibody contact problem
Group Description Parameter

Common density ρs = 1000kg/m3

Poisson’s ratio νs = 0.4
body force Bs = (0, 0)m/s2

artificial viscosity αs = 0s−1

element size h = 0.25m
Solid 1 Young’s modulus Es1 = 300kPa

centroid X1
c = (−4/3, 4/3)m

radius r1 = 0.7m
initial velocity V s1

ini = (0.56,−0.24)m/s
Sold 2 Young’s modulus Es2 = 300kPa

centroid X2
c = (1, 1)m

radius r2 = 0.7m
initial velocity V s2

ini = (0, 0.8)m/s
Solid 3 Young’s modulus Es3 = 300kPa

centroid X3
c = (−1,−1)m

radius r3 = 0.7m

initial velocity V s3
ini = (−1/

√
2,−1/

√
2)m/s

Solid 4 Young’s modulus Es4 = 30MPa
centroid X4

c = (0, 0)m
inner radius r4in = 3.40m
outer radius r4out = 3.76m
initial velocity V s4

ini = (0, 0)m/s

The computational domain Ω0 is constructed by the union of undeformed Lagrangian

solid domains based on the total Lagrangian formulation:

Ω0 = Ω1
S0 ∪ Ω2

S0 ∪ Ω3
S0 ∪ Ω4

S0 . (6.90)

The state variables are the solid displacement U s
i and the solid velocity V s

i . The variational

form consists of the solid momentum equation Rs
m (6.39), the displacement-velocity relation-

ship Rs
uv (6.40), and the contact residual of the stabilized Lagrange multiplier method Rs

c

(6.43). In addition, the face-oriented ghost-penalty method is applied to stabilize U s
i (6.63)

and V s
i (6.59), respectively:
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Rs
m(δU

s; {U s,V s}) +Rs
uv(δV

s; {U s,V s})

+Rs
c(δU

s;U s) +Rgp
L ({δU s, δV s}; {U s,V s}) = 0 . (6.91)

The Newmark method (γ = 0.9, β = 0.5) is used as a time integration scheme and the time

increment ∆t is set to ∆t = 0.2s. The nonlinear contact problems are solved by Newton’s

method and a direct solver is used. The convergence criterion for the Newton iteration

requires a drop of the norm of the residual of 10−5 relative to the norm of the initial residual.

In addition, an adaptive time-stepping scheme is applied to avoid the divergence at the

Newton iteration and for the robust contact analysis method. If the norm of the residual

increases over 104 relative to the norm of the initial residual, ∆t is reduced as follows:

∆tnew = αcut∆told , (6.92)

where αcut is set to 0.7 in this research. The Newton step when ∆t is reduced, is recomputed

from scratch.

Representative computational results are shown in Figure 6.24, focusing on times when

contact occurs. Figures 6.25 and 6.26 show the history of the momentum of the entire system

ΩS0 and momentum of each solid domain Ω1
S0 - Ω

4
S0, respectively. The total momentum (black

line in Figures 6.25 and 6.26) is constant at any time and thus, the numerical implementation

of the transient contact analysis satisfies the conservation of the momentum. The kinks in

Figures 6.25 and 6.26 indicate instances in time when contact occurs. The momentum is

transmitted across solid bodies. These results suggest that the proposed formulation and

computational schemes are able to compute multiple contact phenomena among multiple

solid bodies in a stable fashion with acceptable accuracy.
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Figure 6.24: Results of transient contact problem
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Figure 6.25: History of momentum in x

Figure 6.26: History of momentum in y
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6.6.4 Multibody FSI-Contact Problem using XFEM

The fourth numerical example is a FSI-contact problem based on the combination of the

Lagrangian-immersed FSI method and the stabilized Lagrange multiplier method for contact

using the XFEM. In this example, there are five solid structures made by the neo-Hookean

material (6.71) - (6.74). These solid structures are defined within individual Lagrangian

domain Ωi
L (i = 1 ∼ 5). Each Lagrangian domain Ωi

L contains a solid domain Ωi
S and a

dummy displacement domain Ωi
D: Ω

i
L = Ωi

S ∪ Ωi
D. Figures 6.27 - 6.31 and Table 6.6 are the

geometry of each Lagrangian domain.

Figure 6.27: Lagrangian system 1: Ω1
L0 Figure 6.28: Lagrangian system 2: Ω2

L0

Figure 6.29: Lagrangian system 3: Ω3
L0 Figure 6.30: Lagrangian system 4: Ω4

L0
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Figure 6.31: Lagrangian system 5: Ω5
L0

The interfaces of the solid structures 1, 2 and 4 are defined by the strain ellipsoidal

equation using the exponential function as follows:

e−b2x2

+ e−c2y2 = 2e−a2 , (6.93)

where a, b and c are positive real numbers and only a has the following constraint:

0 < a <
√
ln 2 ≃ 0.8326 . (6.94)

The following results are solutions of (6.93) based on a polar coordinate system (r, θ) (Ya-

mamoto [110]):

r(θ) = r0 +
1

c

√
− ln

[
2 exp(−a2)− exp

(
−b2x2max sin

{(
θ − π

2

)
n

2

})]
, (6.95)

xmax =

√
− 1

b2
ln

(
2 exp(−a2)− 1

)
, (6.96)

where r(θ) is a radius from the centroid (Xc, Yc) as a function of angle θ. Using r(θ), the

signed-distance level set function Φs is computed as follows:

Φs = d
r(θ)

r0
−

√
(X −Xc)2 + (Y − Yc)2 . (6.97)

Finally, the signed-distance level set function ϕs is converted into the Heaviside-type level
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set function Φ, which is used in the Lagrangian-immersed FSI method:

Φ =

[
1 + exp

(
Φs

εΦ

)]−1

(εΦ = 0.5h0.9) . (6.98)

The interfaces of the solid structures 1, 2 and 4 are defined by the following parameters

which are used in (6.96) and (6.97):

Solid 1: n = 6, a = 0.81, b = 0.01485, c = 1, d = 0.5577, r0 = 0.1xmax , (6.99)

Solid 2: n = 4, a = 0.81, b = 0.01800, c = 1, d = 0.5577, r0 = 0.1xmax , (6.100)

Solid 4: n = 5, a = 0.81, b = 0.02200, c = 1, d = 0.5577, r0 = 0.1xmax . (6.101)

The Eulerian domain ΩE has a rectangle domain and no-slip boundary conditions are

applied on all edges of the rectangle. The geometry parameters are summarized in Table

6.6. The fluid domain ΩF is included in ΩE: ΩF ∈ ΩE. The interface of the fluid domain is

denoted as the Eulerian interface ΓE and automatically created by the level set projection

method as shown in Figure 6.32. The fluid domain is modeled by the incompressible Navier-

Stokes equations. Material parameters of the solid and fluid phase, and the initial conditions

are given in Table 6.7. A body force in y direction is only applied to Ω1
S, Ω

2
S, Ω

3
S and Ω4

S.

Figure 6.32: Eulerian system: ΩE
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Table 6.6: Geometry parameters
System Description Parameter

Lagrangian 1 origin X1
o = (1.067, 7.067)m

system size L1 = (1.867, 1.867)m
shape of solid regular hexagon
centroid of solid X1

c = (2.000, 8.000)m
max. radius r1 = 0.641m
angle of r1 θ1 = π/6 rad

Lagrangian 2 origin X2
o = (1.467, 4.267)m

system size L2 = (1.867, 1.867)m
shape of solid rounded square
centroid of solid X2

c = (2.400, 5.200)m
max. radius R2 = 0.656m
min. radius r2 = 0.560m
angle θ2 = π/4 rad

Lagrangian 3 origin X3
o = (0.400, 5.467)m

system size L3 = (1.867, 1.867)m
shape of solid circle
centroid of solid X3

c = (1.333, 6.400)m
radius r3 = 0.509m

Lagrangian 4 origin X4
o = (0.788, 2.628)m

system size L4 = (1.867, 1.867)m
shape of solid regular pentagon
centroid of solid X4

c = (1.733, 3.675)m
max. radius r4 = 0.605m
angle θ4 = π/10 rad

Lagrangian 5 origin X5
o = (−0.400,−0.120)m

system size L5 = (4.800, 3.180)m
width for DBC ad = 0.087m
base width a1 = 3.374m
wall width a2 = 0.626m
height for DBC bd = 0.330m
base height b1 = 0.341m
wall height b2 = 2.853m

Eulerian origin xf
o = (0, 0)m

system size Lf = (4, 10)m
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Table 6.7: Physical parameters of solid and fluid
Domain Description Parameter

Solid density ρs = 1000kg/m3

Young’s modulus Es = 1MPa
Poisson’s ratio νs = 0.4
artificial viscosity αs = 0s−1

body force Bs = (0,−1)m/s2

initial velocity V s
ini = (0,−1)m/s

Fluid density ρf = 1000kg/m3

kinematic viscosity νf = 10−2m2/s
body force bf = (0, 0)m/s2

initial velocity vf
ini : random in [−10−5, 10−5]m/s

As the Lagrangian-immersed FSI method uses multiple meshes, each solid objects and

fluid system are spatially separate. Therefore, different element sizes for the spatial dis-

cretization can be used in each mesh. The spatial discretization of Lagrangian systems 1- 4

is determined based on the size of the spatial discretization in the Eulerian system h as listed

in Table 6.8. The size of the spatial discretization of Lagrangian system 5 (fixed structure

at the bottom): h5L0 is constant and independent from h.

Table 6.8: Summary of spatial discretization (multibody FSI-contact problem)
System Shape of Solid Spatial Size

Eulerian: ΩE - hE = h
Lagrangian 1: Ω1

L0 regular hexagon h1L0 =
2
3
h

Lagrangian 2: Ω2
L0 rounded square h2L0 =

5
9
h

Lagrangian 3: Ω3
L0 circle h3L0 = h

Lagrangian 4: Ω4
L0 regular pentagon h4L0 =

2
3
h

Lagrangian 5: Ω5
L0 concave shape h5L0 = 0.1867m

The weak form of this numerical example is identical to (6.38), which contains both

the FSI boundary integral and the contact boundary integral. As rigid body rotation of

solid structures occurs in this example, the dummy solid method (6.42) is applied and the

residual term Rd
u is computed accordingly. The penalty coefficients for Nitsche’s method,

the face-oriented ghost-penalty method, and the stabilized Lagrangian contact formulation

are summarized in Table 6.9.
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Table 6.9: Penalty coefficients for multibody FSI-contact problem
Method Penalty Coefficients

Nitsche’s method for FSI ηfsi = αfsiEs, αfsi = 0.1s/m
face-oriented ghost-penalty method αgp

Us = αgp
Ud = αgp

V s = αgp
vf

= 0.05, αgp
pf

= 0.005

stabilized Lagrange multiplier method αc = 5

The Newmark method (γ = 0.9, β = 0.5) is used as a time integration scheme and the time

increment ∆t is set to ∆t = 0.1s. Newton’s method with a direct solver are used. The

convergence criterion for the Newton iteration requires a drop of the norm of the residual of

5× 10−3 relative to the norm of the initial residual. In addition, the adaptive time-stepping

scheme is applied to ensure the convergence of the Newton iteration; see (6.92) in Section

6.6.3.

Figures 6.33 - 6.52 show the distribution of the solid and fluid velocities V s
i and vfi , the

fluid pressure pf and the fluid in-plane effective shear stress qf (qf = |σ1 − σ2|/2). Figure

6.33 shows the initial configuration of this FSI-contact problem. Figures 6.34 - 6.37 show

snapshots when only FSI occurs without contact.

Figure 6.33: FSI-contact problem using XFEM (t = 0s, step0)
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Figure 6.34: FSI-contact problem using XFEM (t = 1.1s, step10)

Figure 6.35: FSI-contact problem using XFEM (t = 2.05s, step20)
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Figure 6.36: FSI-contact problem using XFEM (t = 3.05s, step30)

Figure 6.37: FSI-contact problem using XFEM (t = 4.05s, step40)
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Figures 6.38 - 6.52 show snapshots when both FSI and contact occur simultaneously.

Figure 6.52 shows the final step of the computation. The solid structures contact each other,

and the velocity of these structures becomes almost zero in Figure 6.52. The fluid velocity

becomes much smaller than values at step 200 (Figure 6.52) and qf is almost zero in this

snapshot. Thus, the equilibrium state is approximately reached at step 347 (t ≃ 30s).

Figure 6.38: FSI-contact problem using XFEM (t = 4.75s, step50)
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Figure 6.39: FSI-contact problem using XFEM (t = 5.575s, step60)

Figure 6.40: FSI-contact problem using XFEM (t = 6.425s, step70)
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Figure 6.41: FSI-contact problem using XFEM (t = 7.375s, step80)

Figure 6.42: FSI-contact problem using XFEM (t = 8.25s, step90)
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Figure 6.43: FSI-contact problem using XFEM (t = 9s, step100)

Figure 6.44: FSI-contact problem using XFEM (t = 10s, step110)
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Figure 6.45: FSI-contact problem using XFEM (t = 11s, step120)

Figure 6.46: FSI-contact problem using XFEM (t = 11.9s, step130)
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Figure 6.47: FSI-contact problem using XFEM (t = 12.9s, step140)

Figure 6.48: FSI-contact problem using XFEM (t = 13.85s, step150)
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Figure 6.49: FSI-contact problem using XFEM (t = 14.75s, step160)

Figure 6.50: FSI-contact problem using XFEM (t = 16.275s, step180)
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Figure 6.51: FSI-contact problem using XFEM (t = 17.2s, step200)

Figure 6.52: FSI-contact problem using XFEM (t = 30.98125s, step347)
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The results in Figures 6.33 - 6.52 suggest that the Lagrangian-immersed FSI method using

the XFEM has the ability to compute both FSI and contact phenomena simultaneously. As

the solid and fluid meshes are spatially separate, a flexible FSI-contact formulation and

computational method were developed. However, there is a numerical issue in terms of

the XFEM in this example. A typical example of this issue is the oscillation of the fluid

velocity and the fluid stress around Solid 4 (pentagon); see Figure 6.53. This figure shows

the distribution of the fluid velocity and stress around Solid 4 and non-smooth distribution

is observed around Solid 4.

Figure 6.53: Oscillation of fluid velocity and stress (t = 4.05s, step40)

Similar spurious oscillations can be observed in Figure 6.53 is Figures 6.54, 6.55 and

6.56. These figures show the results of a falling cylinder due to the body force within the FSI

system. A two-dimensional circular cylinder is immersed within an incompressible fluid. This

cylinder has the radius of r = 0.509m and its centroid Xc in the initial configuration is Xc =

(1.73, 8.00)m. The geometry parameters of the Eulerian system and material parameters are

identical to the problem presented in Section 6.6.3. Focusing on steps 105 and 125 of Figures

6.54 and 6.55, the fluid velocity highly oscillates around the cylinder (see Figure 6.53) and

this computation diverges at step 126 due to this oscillation. The fluid pressure oscillates in

time; see Figure 6.56.
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Figure 6.54: Interpolation error due to XFEM (velocity in x)

Figure 6.55: Interpolation error due to XFEM (velocity in y)
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Figure 6.56: Interpolation error due to XFEM (fluid pressure)

These issues are caused by the numerical error due to moving interfaces using the combi-

nation of the XFEM and a time stepping scheme. This error has been discussed in Chapter

3. In the Lagrangian-immersed FSI method, the fluid domain is represented by the Eulerian

description and background meshes are used. Immersed FSI interfaces follow the motion of

the solid structures. The combination of the XFEM and the time stepping scheme cannot

handle correctly numerical interpolation due to the phase change as interface moves; see

Figure 1.1.

To overcome this numerical error, XFEM based fixed-grid approach for the FSI (Wall

et al. [69], Mayer et al. [70]) uses the ghost fluid method (Fedkiw et al. [37], Hong et al.

[38], Liu et al. [39] and Naguyen et al. [40]). The ghost fluid method is originally derived

from the numerical interpolation of the Eulerian equations with moving interfaces. This

method uses the idea of a Lagrangian description within the Eulerian system. The numerical

interpolation along time is computed by considering corresponding material coordinates and

thus, the effect of moving interface is included in the time evolution of the solution.

Figure 6.57 illustrates the numerical interpolation along time based on the ghost fluid

method. A region colored by white is defined as the domain A: Ωn
A and another region

colored by gray is defined as the domain B: Ωn
B at time tn. A black solid line and a black
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dashed line represent the interfaces between A and B at time tn and tn−1; they are denoted

by Γn and Γn−1, respectively. At a point xn on Γn, the solution un
B(x

n). belongs to the

phase B. The time interpolation of un
B(x

n) needs the information of the corresponding past

material point at time tn−1: xn−1. Because the spatial point x = xn at tn−1 belongs to

the phase A: ΩA, computing un−1
B is not directly possible. Thus, the ghost fluid method

computes un
B(x

n) considering the corresponding past material coordinate xn−1 using a time

increment at time tn, ∆un, as follows:

un
B(x

n) = un−1
B (xn−1) + ∆u . (6.102)

Figure 6.57: Ghost fluid method

An alternative but more generic approach to overcome this issue is the space-time formu-

lation described in Chapter 3. The Lagrangian-immersed FSI method using the space-time

XFEM is able to treat FSI and contact phenomena properly without using additional treat-

ments such as the ghost fluid method.
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6.7 Discussion

This chapter proposed the Lagrangian-immersed FSI method using the XFEM with a

time stepping scheme. In the Lagrangian-immersed FSI method, the solid and fluid phases

are defined by the Lagrangian and Eulerian descriptions, respectively. Meshes of the solid

and the fluid are spatially disconnected. FSI is computed between non-matching Lagrangian

and Eulerian interfaces using techniques from computational contact mechanics, such as

the master-slave concept, the node-to-surface pairing, and the gap equation. As the solid

phase is defined by the Lagrangian description, conventional contact formulations are directly

applicable to the FSI system and thus, the implementation of the contact formulation is

much easier than with the full-Eulerian FSI method. Interfaces in the Eulerian system

are defined by the level set projection method to capture the deformation of disconnected

solid structures correctly. By introducing the level set projection method into a monolithic

solution strategy for the FSI system, the update of geometry is automatically performed as

the solution converges. The point that no additional operation for the update of interfaces

is one advantage over the previous work of the FSI-contact problem of Mayer, Wall, et al.

[69, 70]. In addition, Nitsche’s method for non-matching interfaces is proposed. The weak

boundary conditions on an interface are satisfied without introducing Lagrange multipliers

used in [69, 70].

Steady-state FSI problems with large deformations were computed by the Lagrangian-

immersed FSI method and the XFEM. There is no limitation on the deformation of the solid

structures as the ALE-FSI method has. As a preliminary study for FSI-contact problems,

a transient contact problem was also computed based on the stabilized Lagrange multiplier

method [75]. Transient multibody contact phenomena were successfully computed by the

XFEM and the conservation of the momentum was verified under the multibody contact.

Finally, a transient multibody FSI-contact problem was studied. The Lagrangian-immersed

FSI method was able to predict the response of a complex FSI-contact system without lim-
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itation on large deformation as the ALE-FSI method has. The drawback of the transient

analysis of the Lagrangian-immersed FSI method using the XFEM with a time stepping

scheme is the presence of numerical interpolation errors due to moving interfaces as dis-

cussed in Section 6.6.4. Therefore, the proposed Lagrangian-immersed FSI method should

be combined with the space-time XFEM to achieve stable and robust FSI-contact problem.

The next chapter (Chapter 7) discusses the Lagrangian-immersed FSI method using the

space-time XFEM, as an appropriate and efficient computational method for FSI-contact

problems.
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Lagrangian-Immersed FSI Method using Space-Time XFEM

7.1 Outline

The Lagrangian-immersed FSI method using the XFEM has the ability to handle si-

multaneously fluid-structure interaction (FSI) and contact (Chapter 6). The Lagrangian

description for the solid phase and the Eulerian description for the fluid phase, respectively.

However, the combination of the XFEM and the time stepping scheme approximates

incorrectly the time derivatives of the fluid velocities when moving interfaces exist because

of the phase change. One method to overcome this interpolation issue is to use the ghost-

fluid method (Fedkiw et al. [37], Hong et al. [38], Liu et al. [39] and Naguyen et al. [40]) and

this method is used in the previous work for FSI-contact problems; XFEM based fixed-grid

approach for the FSI (Wall et al. [69], Mayer et al. [70]). The ghost-fluid method is a mixed

formulation considering both the Eulerian fixed points and the Lagrangian material points

to correctly interpolate in time state variables when the phase changes occurs due to moving

interfaces.

A more generic approach to overcome this issue is the space-time formulation described

in Chapter 3. As the phase change due to a moving interface is considered in a space-time

slab using the space-time XFEM, the Lagrangian-immersed FSI method using the space-

time XFEM is able to treat FSI and contact phenomena properly without using additional

operations like the ghost fluid method.

This chapter describes the finite element discretization and the numerical implementation

of the Lagrangian-immersed FSI method using the space-time XFEM, and its applications to

FSI-contact problems. The strong form of governing equations is identical to the Lagrangian-
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immersed FSI method using the XFEM summarized in Sections 6.2 and 6.3.

In this chapter, the notations of volume and interface of a space-time slab are Q and P

respectively; see Chapter 3. Table 7.1 summarizes the notation of volumes and boundaries

of a space-time slab. In general, a space-time volume Q is subdivided into thin slabs, which

are denoted by Qn with the time interval T n =]tn, tn+1[. The discontinuous Galerkin method

is applied in the temporal direction. Figure 7.1 shows a space-time volume and interfaces in

a space-time slab Qn. As the discontinuous Galerkin method is used in time, Qn does not

contain time tn and tn+1 and its lower and upper temporal bounds are denoted as tn+ and

tn+1
− , which deviate from tn and tn+1 by an infinitesimal value δ:

tn+ ≡ tn + δ, tn+1
− ≡ tn+1 − δ . (7.1)

The Interface P in this slab Qn is denoted by P n. P n+1i,p
− and P n,p

+ denote boundaries on

the upper temporal bound tn+1
− and lower temporal bound tn+ for the phase p. P n

int denotes

an interface in a space-time slab Qn.

Figure 7.1: Definition of volume and interfaces in a space-time slab (phase A and B)

The organization of this chapter is as follows: Section 7.2 summarizes the finite element

discretization of the Lagrangian-immersed FSI method using the space-time XFEM. Section
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Table 7.1: Notation of volume and boundary
Spatial Domain Space-Time Slab

Volume Ω, dΩ Q ≡ Ω⊕ T, dQ = dΩdt
Boundary Γ, dΓ P ≡ Γ⊕ T, dP = dΓdt

7.3 discusses the integration scheme for the space-time XFEM, including space-time FSI

and contact. The level set projection for the space-time XFEM is presented. In Section

7.4, three numerical examples are studied. The fluid phase is modeled by the incompressible

Navier-Stokes (INS) equations. Finite strains and the plane strain assumption are considered

in the solid phase. The first numerical example is a falling circular cylinder due to a body

force in the FSI system. This benchmark problem is a transient FSI analysis with large

solid deformation, which is difficult to analyze with the conventional ALE-FSI method.

The second numerical example is a well-known transient FSI benchmark problem, named as

Turek-Hron FSI3 benchmark problem proposed by Turek and Hron [111]. The final numerical

example is a transient multibody FSI-contact problem using the space-time XFEM. This

problem is identical to the numerical example described in Section 6.6.4. This chapter will

show that the proposed space-time XFEM allows for a stable and robust FSI-contact analysis

without interpolation errors due to moving interfaces.

7.2 Finite Element Discretization of Lagrangian-Immersed FSI Method using

Space-Time XFEM

This section summarizes the finite element discretization of the FSI-contact problem

based on the Lagrangian-immersed FSI method using the space-time XFEM. This section

assumes spatially two-dimensional cases and the plain strain case. The entire spatial domain

Ω is the union of the Eulerian and Lagrangian system: Ω = ΩE∪ΩL and discretized spatially

by bilinear QUAD4 elements. The finite element discretization is also applied to the temporal

domain T . The temporal domain is discretized by linear elements. Therefore, the space-time
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domain Q: Q = Ω⊕ T is discretized by trilinear HEXA8 space-time elements. Given a trial

function space Sh and an admissible test function space Vh defined in a space-time domain:

Trial functions: {U s,V s,U d} ∈ Sh
0 , {vf , pf , ϕ} ∈ Sh , (7.2)

Test functions: {δU s, δV s, δU d} ∈ Vh
0 , {δvf , δpf , δϕ} ∈ Vh, (7.3)

where a lower subscript 0 denote a space in the initial configuration. The variational form

of FSI-contact problems using the compressible material constitutive law for the solid phase

is as follows:

R̃s
m(δU

s; {U s,V s}) + R̃s
uv(δV

s; {U s,V s}) + R̃d
u(δU

d; {U s,U d}) + R̃s
c(δU

s;U s)

+ R̃f
m({δvf , δpf}; {vf , pf}) + R̃ϕ(δϕ; {ϕ, Φ̂})

+ R̃fsi
L (δU s; {U s,V s,vf , pf}) + R̃fsi

E ({δvf , δpf}; {U s,V s,vf , pf})

+ R̃gp
L ({δU s, δV s, δU d}; {U s,V s,U d}) + R̃gp

E ({δvf , δpf}; {vf , pf}) = 0 , (7.4)

where R̃ denotes a weak form for the space-time XFEM. While the weak form for the XFEM

is denoted by R in Section 6.4, a different symbol; R̃, is used for the space-time XFEM in

this chapter to emphasize the difference between weak forms of both the XFEM and the

space-time XFEM.

First, R̃s
m, R̃

s
uv and R̃

d
u are defined in the undeformed Lagrangian space-time domain Qn

L0

and on the corresponding undeformed Lagrangian space-time interface P n
L0-int, based on the

total Lagrangian formulation. R̃s
m and R̃s

uv are the variational forms of the solid momentum

equation (6.7) and the displacement-velocity relationship (6.8) in the solid phase of the initial

space-time configuration Qn
S0. The test function associated with R̃s

m, R̃
s
uv and R̃d

u are δU s
i ,

δV s
i and δUd

i respectively. The detailed forms of R̃s
m, R̃

s
uv and R̃d

u are defined as follows:

R̃s
m =

∫
Qn,s

L0

dQ δU s
i ρ

s

(
∂V s

i

∂t
+ αsV s

i −Bs
i

)
+

∫
Qn,s

L0

dQ
∂δU s

i

∂XJ

Πs
iJ(U

s)

+

∫
Pn,s
L0+

dΩ δU s
i

∣∣n
+
ρs[[V s

i ]]
n
± , (7.5)
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R̃s
uv =

∫
Qn,s

L0

dQ δV s
i ρ

s

(
∂U s

i

∂t
− V s

i

)
+

∫
Pn,s
L0+

dΩ δV s
i

∣∣n
+
ρs[[U s

i ]]
n
± . (7.6)

The last terms in (7.5) and (7.6) are additional terms derived from the discontinuous Galerkin

method in time.

Second, R̃d
u is the variational form of the governing equation in the undeformed dummy

displacement domainQn,d
0 , based on the total Lagrangian formulation. Based on the Helmholtz

smoothing method, the Helmholtz equation (6.9) for the dummy displacement outside of the

solid phase ΩD0 and the continuity condition of U s
i and Ud

i (6.10) on the undeformed La-

grangian space-time interface P n
L0-int based on Nitsche’s penalty method are included in this

weak form:

R̃d
u =

∫
Qn,d

L0

dQ
∂δUd

i

∂XJ

ρd
∂Ud

i

∂XJ

+

∫
Qn,d

L0

dQ δUd
i ρ

dUd
i

−
∫
Pn
L0-int

dP δUd
i ρ

d ∂U
d
i

∂XJ

ñd
L0J +

∫
Pn
L0-int

dP δUd
i ρ

dηd(U s
i − Ud

i ) , (7.7)

where ηd is the Nitsche penalty factor for the continuity of the displacements within the

Lagrangian system. ñd
L0J is the undeformed space-time outward normal from the dummy

displacement domain Qn,d
0 . As a spatially two-dimensional case is assumed, ñd

L0J has three

components (two spatial directions: x, y and one temporal direction: t). However, the tem-

poral component of the undeformed space-time normal is zero because a space-time interface

is always perpendicular to the spatial domain when the total Lagrangian formulation is used

(Figure 7.2):

Undeformed Spatial Normal: nα
L0 = (nα

L0x, nα
L0y)

T , (7.8)

Undeformed Space-Time Normal: ñα
L0 = (nα

L0x, nα
L0y, 0)T . (7.9)

Based on the dummy solid method described in Section 6.2.2, the dummy momentum

equation (6.11) and the dummy displacement-velocity relationship (6.12) determineRd
u, using
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the one-sided Nitsche method as follows:

R̃d
u =

∫
Qn,d

L0

dQ δUd
i ρ

d

(
∂V d

i

∂t
+ αdV d

i −Bd
i

)
+

∫
Qn,d

L0

dQ
∂δUd

i

∂XJ

Πd
iJ(U

d)

+

∫
Qn,d

L0

dQ δV d
i

(
∂Ud

i

∂t
− V d

i

)
−

∫
Pn
L0-int

dP δUd
i {ΠiJ}ñs→d

L0J

−
∫
Pn
L0-int

dP δΠd
iJ ñ

s→d
L0J (U

s
i − Ud

i ) +

∫
Pn
L0-int

dP δUd
i η

d(U s
i − Ud

i )

+

∫
Pn,d
L0+

dΩ δUd
i

∣∣n
+
ρd[[V d

i ]]
n
± +

∫
Pn,d
L0+

dΩ δV d
i

∣∣n
+
ρd[[Ud

i ]]
n
± , (7.10)

where {·} denotes a weighted average and the representative strategies for the weighting is

described in Section 5.5.2. The parameters of the dummy displacement Qn,d
L0 based on the

dummy solid method are identical to the actual solid domain Qn,s
L0 except for the body force

(the body force in Qn,d
L0 is 0). The last line of (7.10) show the correction terms due to the

discontinuous Galerkin method in time.

Third, R̃s
c denotes the variational form of the stabilized Lagrange multiplier method

for contact, which is an interface integral between two different solid bodies in Qn
L. R̃

s
c is

evaluated on the interface of the master body in the initial configuration P n
c0:

R̃s
c =

∫
Pn
c0

dP δg0nλ
0 , (7.11)

where δg0n is the variation of the normal gap in the initial Lagrangian system. λ0 is governed

by the following equation based on the stabilized Lagrange multiplier method (Section 6.2.4):

R̃s
λ =

∫
Pn
c0

dP δλ0(λ0 − λ̃0 − γcg0n) = 0 , (7.12)

the definition of λ̃0 is (6.27). The numerical implementation of this contact formulation for

the space-time XFEM; (7.11) and (7.12), is summarized in Section 7.3.5.

Fourth, R̃f
m, and R̃ϕ are defined in the Eulerian space-time slab Qn

E and on the corre-

sponding space-time interface P n
E-int, in the initial configuration. R̃f

m is the variational form

of a volume contribution of the fluid momentum equation (6.2) and the continuity equation
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(6.3) in the fluid phase of the current configuration Qn,f
E :

R̃f
m =

∫
Qn,f

E

dQ δvfi ρ
f

(
∂vfi
∂t

+ vfj
∂vfi
∂xj
− bfi

)
+

∫
Qn,f

E

dQ
∂δvfi
∂xj

σf
ij(v

f , pf ) +

∫
Qn,f

E

dQ δpf
∂vfi
∂xi

+
∑

e∈Qn,f
E

∫
Qn,f

Ee

dQ τ fm

(
vfj
∂δvfi
∂xj

+
1

ρf
∂δpf

∂xi

)
r̃fi +

∑
e∈Qn,f

E

∫
Qn,f

Ee

dQ τ fc
∂δvfi
∂xi

∂vfj
∂xj

+

∫
Pn,f
E+

dΩ δvfi
∣∣n
+
ρf [[vfi ]]

n
± . (7.13)

The last line of (7.13) shows the correction term due to the discontinuous Galerkin method

in time. r̃fi in (7.13) is a scalar residual of the momentum equation of the incompressible

Navier-Stokes equations:

r̃fi = ρf
∂vfi
∂t

+ ρfvfj
∂vfi
∂xj
−
∂σf

ij(v
f , pf )

∂xj
− ρfbfi . (7.14)

In (7.13), the terms in the first line are the standard Galerkin terms, the terms in the second

line are the convection and incompressibility stabilization terms. Here, the residual-based

variational multiscale (VMS) method is used to suppress the numerical instability due to

the convection and incompressibility of the INS fluid. τ fm and τ fc denote the elementwise

stabilization parameters of the VMS method, defined in (6.47) and (6.48). The stabilized

fluid residual denoted in (7.13) does not include
∂δvfi
∂t

term in the stabilized test function and

thus, it is identical to the stabilized fluid residual using the XFEM with an time stepping

scheme introduced in Section 6.4. This form is called as the WTSE option (∂w/∂t term is

excluded; w = δvfi in (7.13)) proposed by Tezduyar et al. [87].

R̃ϕ is the variational form of the level set projection using the weighted projection method

(6.35):

R̃ϕ =

∫
Qn

E

dQ δϕf(Φ̂)(ϕ− Φ̂) . (7.15)

This projection is performed in the entire Eulerian space-time slab Qn
E to capture the motion

of the interface in the fluid domain. The detailed numerical implementation of the level set

projection method for the space-time XFEM is summarized in Section 7.3.6.
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R̃fsi
L and R̃fsi

E are the interface contributions of the solid and fluid momentum equations;

(6.7) and (6.2), enforced with Nitsche’s method. The master-slave concept used in the

Lagrangian-immersed FSI method using the XFEM can be directly applied to the FSI in-

terface integral for the space-time XFEM. The master interface is the Eulerian space-time

interface P n
E-int and the slave interface is the deformed Lagrangian space-time interface P n

L-int.

Therefore, the interface integrals of FSI are performed on the Eulerian space-time interface

P n
E-int. R̃

fsi
L is the FSI contribution from the Lagrangian interface P n

L-int and R̃
fsi
E is the FSI

contribution for the Eulerian interface P n
E-int in the current configuration:

R̃fsi
L =−

∫
Pn
E-int

dP δU s
i {σij}fsiñ

s→f
Lj +

∫
Pn
E-int

dP δU s
i η

fsi
(
V̂ s
i

∣∣
Pn
L-fsi

− vfi
)
, (7.16)

R̃fsi
E =

∫
Pn
E-int

dP δvfi {σij}fsiñ
s→f
Ej −

∫
Pn
E-int

dP σf
ij(δv

f , δpf )ñs→f
Ej

(
V̂ s
i

∣∣
Pn
L-fsi

− vfi
)

−
∫
Pn
E-int

dP δvfi η
fsi
(
V̂ s
i

∣∣
Pn
L-fsi

− vfi
)
. (7.17)

Here, {σij}fsi is the weighted average of the Cauchy stress of solid and fluid phase defined

in (6.52). In this research, the modulus weighting defined in (6.53) is used. As the current

configuration is used for these FSI contribution, the deformed space-time normal of the

Lagrangian interface ñs→f
Lj and the one of the Eulerian interface ñs→f

Ej are used ain (7.16)

and (7.17). In this case, the temporal component of these normals is non-zero because

interfaces in the deformed configuration is tilting at the interface moves. Details of the

numerical implementation of these FSI integrals are summarized in Section 7.3.4. Equations

(7.16) and (7.17) are extensions of Nitsche’s method using the XFEM defined by (6.50) and

(6.51) with spatial interface integrals being converted into space-time interface integrals.

Detailed discussions of the FSI interface integrals in the Lagrangian-immersed FSI method

are summarized in Appendix C.

Finally, R̃gp
L and R̃gp

E are the weak forms of the face-oriented ghost-penalty method. The

face-oriented ghost-penalty method for the space-time XFEM is simply an extension of the
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integrals on a spatial interface Γ to integrals on a space-time interface P .

R̃gp
L =R̃gp

LV s(δV s;V s) + R̃gp
LUs(δU s;U s) + R̃gp

LUd(δU
d;U d) , (7.18)

R̃gp
E =R̃gp

Evf
(δvf ;vf ) + R̃gp

Epf
(δpf ; pf ) . (7.19)

The face-oriented ghost-penalty method for the Lagrangian system Qn
L is computed based

on the total Lagrangian formulation on the undeformed Lagrangian space-time face P n
Lgp0.

R̃gp
LV s =

∫
Pn
Lgp0

dP

[[
∂δV s

i

∂ZJ

]]
gp

ñgp
L0Jη

gp
V s

[[
∂V s

i

∂ZK

]]
gp

ñgp
L0K , (7.20)

R̃gp
LUs =

∫
Pn
Lgp0

dP

[[
∂δU s

i

∂ZJ

]]
gp

ñgp
L0Jη

gp
Us [[Πs

iK ]]gpñ
gp
L0K , (7.21)

Rgp
LUd =

∫
Pn
Lgp0

dP

[[
∂δUd

i

∂ZJ

]]
gp

ñgp
L0Jη

gp
Ud [[Π

d
iK ]]gpñ

gp
L0K , (7.22)

where [[·]]gp means the jump operator for the face-oriented ghost-penalty method between two

adjacent space-time elements Qn
L0e1

and Qn
L0e2

(Qn
L0e1
∈ Qn

L0, Q
n
L0e2
∈ Qn

L0). A generalized

undeformed coordinate Z includes the initial configuration X and the time t; Z = (X, t).

ñgp
L0I is the undeformed space-time normal of the faces for the face-oriented ghost-penalty

method. As (7.22) is based on the initial configuration, faces for the ghost-penalty method

is perpendicular to the spatial domain. Thus, ñgp
L0I is parallel to the spatial domain and

thus, the temporal component ñgp
L0t is zero. Details are summarized in Section 7.3.3. The

face-oriented ghost-penalty method for the Eulerian system Qn
E is computed in the current

configuration on the face of the Eulerian space-time element P n
Lgp:

R̃gp
Evf

(δvf ;vf ) =

∫
Pn
Egp

dP

[[
∂δvfi
∂zj

]]
gp

ñgp
Ejη

gp
vf

[[
∂vfi
∂zk

]]
gp

ñgp
Ek , (7.23)

R̃gp
Epf

(δpf ; pf ) =

∫
Pn
Egp

dP

[[
∂δpf

∂zi

]]
gp

ñgp
Eiη

gp
pf

[[
∂pf

∂zj

]]
gp

ñgp
Ej . (7.24)

The definition of the penalty factors in (7.20) - (7.24) is identical to the settings using the

XFEM and the time stepping scheme; see (6.65) - (6.69).
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7.3 Numerical Implementation

This section focuses on the numerical implementation of the finite element discretization

for the Lagrangian-immersed FSI method using the space-time XFEM described above. This

section also assumes spatially tow-dimensional cases and the plane strain model. For the

fundamental concept and implementation of the space-time XFEM, the reader is referred to

Chapter 3.

7.3.1 Space-Time Slab for Lagrangian-Immersed FSI Method

In the Lagrangian-immersed FSI method using the XFEM and the time stepping scheme

(Chapter 6), solid and fluid domains are spatially separate into different systems; the La-

grangian spatial domain ΩL and the Eulerian spatial domain ΩE. Similarly, the Lagrangian-

immersed FSI method using the space-time XFEM uses separate space-time slabs; the La-

grangian space-time slab Qn
L and the Eulerian space-time slab Qn

E defined between tn+ and

tn+1
− . Figure 7.2 shows an undeformed Lagrangian space-time slab Qn

L0 and Qn
E, along with

the summary of notation for volumes and interfaces assuming a two-phase case (phase 1 and

2). P n
L0-int is an undeformed Lagrangian interface that is always perpendicular to the spatial

domain (x-y plane) in the initial configuration. The elementwise temporal layer approach is

applied to both the undeformed Lagrangian and Eulerian slabs: Qn
L0 and Qn

E.

7.3.2 Integration Schemes for Volume and Standard Interface

Volume integration points in Qn
L0 and Qn

E are set in each temporal slice defined by the

elementwise temporal layer approach. On standard interfaces (matching interfaces), which

is used for the standard boundary integral within one space-time slab, its integration points

are defined independently from temporal layers. A detailed discussion of the setting of

integration points and corresponding weights in the volume and on the standard interfaces

is summarized in Sections 3.4.2 and 3.4.3.
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Figure 7.2: Lagrangian and Eulerian space-time slabs

7.3.3 Integration Schemes for Face-Oriented Ghost-Penalty Method

Integration points for the face-oriented ghost-penalty method using the space-time XFEM

are defined on the faces of intersected space-time elements. P n
Lgp0 is the face of a space-time

intersected element in the undeformed Lagrangian slab. P n
Egp is the face of a space-time

intersected element in the Eulerian slab. Figure 7.3 shows an example of integration points

for the face-oriented ghost-penalty method between two adjacent space-time elements. A

detailed discussion about the face-oriented ghost-penalty method for the space-time XFEM

is summarized in Section 3.4.4.

7.3.4 Pairing of Integration Points on Non-Matching Space-Time Interfaces for

FSI

The Lagrangian-immersed FSI method integrates the weak form of the coupling condi-

tions over non-matching interfaces for FSI. In the Lagrangian-immersed FSI method using

the XFEM with a time stepping scheme discussed in Chapter 6, the master-slave concept is
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Figure 7.3: Space-time integration points for face-oriented ghost-penalty stabilization

applied. The Eulerian interface ΓE is the master side and the deformed Lagrangian interface

ΓL is the slave side. The node-to-surface (NTS) pairing is used to define pairs of integration

points on separate interfaces for FSI and the following gap equation governs the location of

the pairs of the master (Eulerian) integration point xE and the slave (Lagrangian) integration

point xL = XL +U s
L:

xEi + gnnEi(ϕE)−XLi − U s
Li(XL) = 0 , (7.25)

where nE is the Eulerian spatial normal and this NTS pairing is performed in the current

configuration (between spatial interfaces; ΓE and ΓL). The master-slave concept and the

NTS pairing are applied to the FSI interface integrals between non-matching space-time

interfaces: the Eulerian space-time interface P n
E-int and the deformed Lagrangian space-time

interface P n
L-int. As the traction boundary condition and the continuity condition of velocity

are purely spatial conditions and instantaneous in time, the NTS pairing of the master and

slave integration points for the space-time XFEM is performed by the same manner as the

one for the XFEM with a time stepping scheme. Hence, (7.25) can be directly used in

the space-time XFEM. The normal in the NTS pairing condition (7.25) for the space-time

XFEM should be the Eulerian spatial normal nE, not the Eulerian space-time normal ñE

which contains not only spatial components but also temporal component.
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Figure 7.4 shows an example of the NTS pairing of integration points on non-matching

interfaces P n
E-int and P n

L-int at an intermediate step of the Newton iteration. This figure

assumes the case of a spatially circular Lagrangian structure surrounded by the Eulerian

fluid. The cylinder moves to downward in y direction due to a body force. First, the

intersections are detected and the Delaunay triangulation is performed in both interfaces;

P n
E-int and P

n
L-int. Blue lines show the triangulation of the Eulerian space-time interface and

red lines show the triangulation of the deformed Lagrangian space-time interface. As this

figure is at an intermediate step (larger than 1 step) of the Newton iteration, both interfaces

are tilting in time due to the motion of the deformed solid structure. Then, the master

integration points on the Eulerian interface P n
E-int are defined on each Delaunay triangle

by the quadrature rule and represented by blue circles in Figure 7.4. Finally, the NTS

paring is performed for each master (Eulerian) integration point onto a corresponding slave

(Lagrangian) integrations point. The slave integration points on the Lagrangian interface

P n
L-int are represented by red asterisks in Figure 7.4.

Figure 7.4: Node-to-surface (NTS) pairing between non-matching space-time interfaces
(◦: master (Eulerian) integration points, ∗: slave (Lagrangian) integration points)

(intermediate step of the Newton iteration)
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7.3.5 Contact Formulation for Space-Time XFEM

The stabilized Lagrange multiplier method is used to weakly enforce frictionless contact

in this research. As Section 7.2 describes, the weak form of the stabilized Lagrange multiplier

method for the space-time XFEM is as follows:

R̃s
c =

∫
Pn
c0

dP δg0nλ
0 , (7.26)

R̃s
λ =

∫
Pn
c0

dP δλ0(λ0 − λ̃0 − γcg0n) . (7.27)

These equations are extensions of the stabilized Lagrange multiplier method using the XFEM

with a spatial contact interface Γc0 being converted into the space-time contact interface Pc0.

The key point of the space-time contact formulation is the integration scheme between space-

time contact interfaces. The contact condition is enforced between two Lagrangian space-

time interfaces in the initial configuration. P n
c0-m is the master (Lagrangian) space-time

contact interface in the initial configuration and equivalent to the notation of P n
c0, which is

actually used for the integrals of the contact formulation. P n
c0-s is the slave (Lagrangian)

space-time contact interface in the initial configuration. Figure 7.5 shows the master and

slave space-time elements, and their contact interfaces; P n
c0-m and P n

c0-s.

Figure 7.5: Space-time contact interfaces (undeformed configuration)
(a). master space-time element, (b). slave space-time element
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While the contact integrals (7.26) and (7.27) are evaluated in the initial configuration,

the evaluation of the contact condition is performed in the current configuration. Figure

7.6 shows an image of contact interfaces in the current configuration. In Figure 7.6, two

Lagrangian interfaces are separate at the lower bound in time; tn+, and penetrate each other

at the upper bound in time; tn+1
− .

Figure 7.6: Space-time contact interfaces (deformed configuration)
(before performing contact formulation)

The purpose of the contact formulation is obviously to avoid the penetration of contact

interfaces. As state variables are defined at the lower temporal bound tn+ and the upper

temporal bound tn+1
− , the penetration at tn+ and tn+1

− must be avoided. Therefore, the setting

of integration points for space-time contact is the key to suppress penetration at tn+ and tn+1
− .

Figure 7.7 is a comparison of two settings of integration points for the space-time contact

formulation. Black circles represent integration points for the space-time contact formulation.

In Figure 7.7 (a), the integration points are placed like the FSI interface integrals described

in Section 7.3.4. In this case, the integration points are located between tn+ and tn+1
− . The

contact condition is evaluated on these points and thus, the perfect condition of the contact

formulation is not guaranteed at tn+ and tn+1
− because there is no evaluation point on lines

of tn+ and tn+1
− . On the other hand, the placement in Figure 7.7 (b) is a setting like the

standard spatial contact formulation used in the XFEM. The integration points are located
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only on the upper and lower bound in time: tn+ and tn+1
− .

Figure 7.7: Setting of integration points for space-time contact (master interface P n
c0-m)

(a). Setting like FSI interface integral, (b). Setting like standard contact formulation

An additional benefit of Figure 7.7 (b) is that the conventional contact formulation used

in the standard XFEM is directly applicable to the space-time XFEM. Contact integrals

at tn+ and tn+1
− can be computed independently. Thus, (7.26) is described by only spatial

boundary integrals in this case, even if when the space-time XFEM is used:

R̃s
c =

∫
Pn
c0

dP δg0nλ
0

=

∫ tn+1
−

tn+

dt

∫
Γc0

dΓ δg0nλ
0

≃∆t

2

∫
Γn
c0+

dΓ δg0nλ
0 +

∆t

2

∫
Γn+1
c0-

dΓ δg0nλ
0 (7.28)

≃∆t

2

∫
Γn
c0+

dΓ δg0nλ
0
1 +

∆t

2

∫
Γn+1
c0-

dΓ δg0nλ
0
2 . (7.29)

The weak form for contact R̃s
c is simplified like (7.28) as the summation of spatial boundary

integrals on Γn
c0+ and Γn+1

c0- which indicate spatial contact interfaces at tn+ and tn+1
− , respec-

tively (lower and upper lines of Figure 7.7 (b)). As the contact integrals are computed based

on the total Lagrangian formulation, i.e. the initial configuration, the space-time contact
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interfaces P n
c0 = P n

c0-m are always perpendicular to the spatial domain. Hence, temporal and

spatial integrals can be divided explicitly as shown in (7.28). In (7.29), different Lagrange

multipliers are introduced at tn+ and tn+1
− . λ01 and λ02 are Lagrange multipliers of the stabi-

lized Lagrangian contact formulation at tn+ and tn+1
− , respectively. Each integral of (7.29)

is identical to the stabilized Lagrangian multiplier method for contact using the standard

XFEM. In addition, the way to detect slave integration points based on the master-slave

concept is also identical to the method for the XFEM described in Section 6.2.4.

To compute (7.29), the constraint equation of the stabilized Lagrange multiplier method

(7.27) is split into two integrals at tn+ and tn+1
− using two Lagrange multipliers λ01 and λ02:

R̃s
λ1

=
∆t

2

∫
Γn
c0+

dΓ δλ01(λ
0
1 − λ̃01 − γcg0n) , (7.30)

R̃s
λ2

=
∆t

2

∫
Γn+1
c0-

dΓ δλ02(λ
0
2 − λ̃02 − γcg0n) , (7.31)

where λ̃01 and λ̃02 are weighted averages of the surface traction along the normal direction at

tn+ and tn+1
− , respectively. The definitions of λ̃01 and λ̃

0
2 are identical to the one for the spatial

contact formulation (6.27).

The space-time contact formulation based on the stabilized Lagrange multiplier method

by (7.32) - (7.34) and Figure 7.8. The Detailed discussions in terms of the stabilized Lagrange

multiplier method for the XFEM with a time stepping scheme are described in Appendix D:

R̃s
c =

∆t

2

∫
Γn
c0+

dΓ δg0nλ
0
1 +

∆t

2

∫
Γn+1
c0-

dΓ δg0nλ
0
2 , (7.32)

R̃s
λ1

=
∆t

2

∫
Γn
c0+

dΓ δλ01(λ
0
1 − λ̃01 − γcg0n) , (7.33)

R̃s
λ2

=
∆t

2

∫
Γn+1
c0-

dΓ δλ02(λ
0
2 − λ̃02 − γcg0n) . (7.34)
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Figure 7.8: Space-time contact interfaces and integration points (undeformed configuration)
(a). Master space-time element, (b). Slave space-time element
(•: Master integration points, ◦: Slave integration points)

7.3.6 Level Set Projection for Space-Time XFEM

This section presents the numerical implementation of the level set projection method for

the space-time XFEM. The original variational form of the level set function is as follows:

R̃ϕ =

∫
Qn

E

dQ δϕf(Φ̂)(ϕ− Φ̂) , (7.35)

where ϕ is the level set function in the Eulerian space-time slab Qn
E, Φ̂ is the level set function

in the deformed configuration of the Lagrangian space-time slab Qn
L and f(Φ̂) is a weighting

function defined in (6.34).

Figure 7.9 illustrates the procedure of the level set projection method for the space-

time XFEM. The red interface represents a Lagrangian interface in a Lagrangian space-

time element. The blue interface represents an Eulerian interface in an Eulerian space-time

element. These interfaces are implicitly defined by the nodal level set functions of the space-

time elements. The deformed Lagrangian element is mapped from Qn
L0e to Q

n
Le, and the level

set projection is performed onto the Eulerian element Qn
Ee.

In this research, the level set function at tn+ in both the Lagrangian and Eulerian slabs

is fixed, and the level set projection is performed only for tn+1
− . There are two reasons for
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Figure 7.9: Level set projection for space-time XFEM
(a) Undeformed Lagrangian space-time element Qn

L0e

(b) Deformed Lagrangian space-time element Qn
Le

(c) Eulerian space-time element Qn
Ee

this approach. The main reason is related to the correction terms due to the discontinuous

Galerkin method in time; see, for example; the last terms of (7.5) and (7.6), or the last lines

of (7.10) and (7.13):

e.g. in (7.13);

∫
Pn,f
E+

dΩ δvfi
∣∣n
+
ρf [[vfi ]]± =

∫
Pn,f
E+

dΩ δvfi
∣∣n
+
ρf
(
vfi
∣∣n
+
− vfi

∣∣n
−

)
, (7.36)

where [[·]]± is the jump operator between tn+ and tn−. In the discontinuous Galerkin method,

state variables at the current space-time slab Qn and the past space-time slab Qn−1 are

discontinuous, but the continuity of state variables between tn+ in Qn and tn− in Qn−1 is

enforced weakly through a correction term, such as (7.36). This term is an integral over the

bottom face of the current space-time slab. To compute (7.36), the geometry at tn+ and tn−

should be identical and thus, the level set function at tn+ in both the Lagrangian and Eulerian

slabs is fixed as the level set function at tn− computed at the past space-time slab Qn−1. The

second reason to fix the level set function at tn+ is that the linear interpolation along time is

used for the level set function in the proposed space-time XFEM; see Chapter 3. Thereby,

even if the level set function at tn+ in both the Lagrangian and Eulerian slabs is fixed and

the level set projection is performed only on the slice at tn+1
− , the space-time interfaces are

accurately created under the assumption of the linear interpolation along time.

The integration points for the level set projection method in the space-time XFEM are
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distributed only on the spatial domain at tn+1
− . The spatial domain at tn+1

− in an Eulerian slab

Qn
E and a deformed Lagrangian slab Qn

L are denoted as P n+1
E− and P n+1

L− respectively. Figure

7.10 illustrates the level set projection for the space-time XFEM. The level set projection

method is only performed on green faces; i.e. spatial domains at tn+1
− ; (P n+1

E− and P n+1
L− ).

Figure 7.11 is the detailed procedure of the level set projection method for the space-time

XFEM in this research. The associated governing equation (7.35) is rewritten as an integral

in the Eulerian spatial volume P n+1
E- as follows:

R̃ϕ = ∆t

∫
Pn+1
E-

dΩ δϕf(Φ̂)(ϕ− Φ̂) . (7.37)

Another approach to compute the level set projection is the procedure similar to the

contact formulation described in Section 7.3.5. In this case, the level set projection is per-

formed at the upper and lower bounds. To guarantee the continuity of the level set function

across space-time slabs, an additional treatment such as Nitsche’s method is needed for its

continuity condition. While this approach is not tested, a strong penalty factor might be

needed when Nitsche’s method is used. This is because the computation of (7.36) needs

consistent spatial geometries between tn+ and tn−.

Figure 7.10: Level set projection performed at tn+1
−

(green faces: spatial domain at tn+1
− , ◦: Eulerian integration points)
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Figure 7.11: Procedure of level set projection for space-time XFEM
(colored circle: active integration points, △: inactive integration points)

(dashed lines: spatial interfaces at tn+1
− )



www.manaraa.com

206

7.3.7 Structure of Dynamic Jacobian

The Jacobian (tangential stiffness) corresponding to the weak form (7.4) of the Lagrangian-

immersed FSI method using the space-time XFEM is summarized subsequently. The global

Jacobian J̃ is decomposed into four block Jacobians as follows:

J̃ =
∂R̃

∂ũ
=

 Jn
n Jn+1

n

Jn
n+1 Jn+1

n+1

 , (7.38)

where ũ is the vector of all state variables including information at tn+ and tn+1
− . In each block

Jacobian J b
a, rows of J

b
a mean state variables at ta and columns of J b

a mean state variables at

tb. In the following discussion, contributions of the face-oriented ghost-penalty method are

not shown.

The structure of a diagonal block Jacobian Jn
n is shown in Figure 7.12 (tn+ ⊗ tn+). As

the level set projection is only performed at the upper bound tn+1
− and ϕ is fixed at tn+, the

contribution of ϕ: R̃ϕ is omitted in Jn
n .

Figure 7.12: Broad structure of diagonal block Jacobian (Jn
n : t

n
+ ⊗ tn+)

Jn+1
n+1 is another diagonal block Jacobian at time tn+1

− (tn+1
− ⊗ tn+1

− ). Figure 7.13 shows

the structure of Jn+1
n+1 . In this block Jacobian, contributions of the level set function ϕ (blue

and red terms) exist. Like the Lagrangian-immersed FSI method using the XFEM (Section
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6.5.1), the post level set projection is also applied when the norm of the residual relative

to the initial residual is larger than 10−1. Blue terms are omitted when the post level set

projection is applied like Section 6.5.2.

Figure 7.13: Broad structure of diagonal block Jacobian (Jn+1
n+1 : t

n+1 ⊗ tn+1)

Figure 7.14 shows the structure of an off-diagonal block Jacobian Jn+1
n (tn+⊗tn+1

− ). As the

level set function is variable only at tn+1
− and the contact formulation R̃s

c is only defined on

diagonal block Jacobians based on (7.29), Jn+1
n has simple structure. Another off-diagonal

block Jacobian Jn
n+1 (tn+1

− ⊗ tn+) also has similar structure like Figure 7.14.

Figure 7.14: Broad structure of off-diagonal block Jacobian (Jn+1
n : tn+ ⊗ tn+1

− )
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7.4 Numerical Examples

This section studies numerical examples of the Lagrangian-immersed FSI method using

the space-time XFEM. These are spatially two-dimensional transient FSI problems. The

fluid phase is modeled by the incompressible Navier-Stokes (INS) equations. In the solid

phase, the plane strain case is assumed. The first numerical example is a falling circular

cylinder due to a body force surrounded by fluid. This example demonstrates the stability

and accuracy of the Lagrangian-immersed FSI method using the space-time XFEM in the

presence of large deformations. The second numerical example is the well-known Turek-Hron

FSI3 benchmark problem proposed by Turek and Hron [111]. This example demonstrates the

applicability of the proposed analysis method for problems with higher Reynolds number.

The third numerical example is a transient FSI-contact problem revising the fourth problem

of Section 6.6.4. The geometry and material parameters are the same as the one of the

problem in Section 6.6.4. This numerical example shows the ability to simulate multiphase

contact problems using the space-time formulation. In these numerical examples, following

materials are used:

St. Venant-Kirchhoff Material

W s =
1

2
λs
(
Tr(Es)

)2
+ µsTr(Es2) , (7.39)

Ss
IJ =

∂W

∂Es
IJ

= λsTr(Es)δIJ + 2µsEs
IJ , (7.40)

Neo-Hookean Material (Belytschko et al. [107])

W s =
1

2
λs
(
ln(detF s)

)2
+

1

2
µs
(
Tr(Cs)− 3

)
− µs ln(detF s) , (7.41)

Ss
IJ =2

∂W

∂Cs
IJ

=
(
λs ln(detF s)− µs

)
Cs−1

IJ + µsδIJ . (7.42)

Here, W s is the hyperelastic function, F s is the deformation gradient tensor, Cs is the right

Cauchy-Green tensor; Cs = F sTF s, Es is the Green-Lagrange strain tensor; Es = (Cs−I)/2,
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and Ss is the second Piola-Kirchhoff stress tensor. λs and µs are the Lamé’s constants defined

as follows:

λs =
νs

(1 + νs)(1− 2νs)
Es , (7.43)

µs =
1

2(1 + νs)
Es , (7.44)

where Es is the Young’s modulus and νs is the Poisson’s ratio.

7.4.1 Falling Circular Cylinder due to Body Force

The first numerical example is a falling circular cylinder due to a body force immersed

in fluid. The cylinder has a radius of r = 0.509m and its centroid in the initial configuration

is at Xc = (1.73, 8.00)m. This cylinder is made by a compressible neo-Hookean material.

The body force is applied only in y-direction. Figures 7.15 and 7.16 show the undeformed

Lagrangian domain ΩL0 and the Eulerian domain ΩE, respectively. No-slip boundary condi-

tions are applied on the outer edges Γnoslip of ΩE. The two-dimensional circular cylinder is

immersed in ΩE by the level set projection method and the Eulerian interface ΓE is created.

The geometry and material parameters are summarized in Table 7.2.

Figure 7.15: Lagrangian system: ΩL0 Figure 7.16: Eulerian system: ΩE
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Table 7.2: Geometrical and material parameters for falling cylinder
Domain Description Parameter

Solid origin X1
o = (0.8, 7.07)m

system size L1 = (1.87, 1.87)m
centroid X1

c = (1.73, 8)m
radius of cylinder R1 = 0.509m
density ρs = 1000kg/m3

Young’s modulus Es = 1MPa
Poisson’s ratio νs = 0.4
artificial viscosity αs = 0s−1

body force Bs = (0,−1)m/s2

initial velocity V s
ini = (0,−1)m/s

Fluid origin xf
o = (0, 0)m

system size Lf = (4, 10)m
density ρf = 1000kg/m3

kinematic viscosity νf = 10−2m2/s
body force bf = (0, 0)m/s2

initial velocity vf
ini : random in [−10−5, 10−5]m/s

The weak form of this example does not contain the contribution of the contact R̃s
c:

R̃s
m(δU

s; {U s,V s}) + R̃s
uv(δV

s; {U s,V s}) + R̃d
u(δU

d; {U s,U d})

+ R̃f
m({δvf , δpf}; {vf , pf}) + R̃ϕ(δϕ; {ϕ, Φ̂})

+ R̃fsi
L (δU s; {U s,V s,vf , pf}) + R̃fsi

E ({δvf , δpf}; {U s,V s,vf , pf})

+ R̃gp
L ({δU s, δV s, δU d}; {U s,V s,U d}) + R̃gp

E ({δvf , δpf}; {vf , pf}) = 0 . (7.45)

Details of each residual are summarized in Section 7.2. In this example, the Helmholtz

smoothing method (7.7) is used as the residual for the dummy displacement domain; R̃d
u, be-

cause the rigid body rotation of the cylinder is small. The penalty factors of Nitsche’s method

for the FSI contributions; R̃fsi
L and R̃fsi

E , Nitsche’s method for the dummy displacement do-

main in R̃d
u and the face-oriented ghost-penalty method in R̃gp

L and R̃gp
E are summarized in

Table 7.3.

Three temporal slices are defined in each temporal layer. Newton’s method with a direct

linear solver is used and the convergence criterion requires a drop of the norm of the residual
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Table 7.3: Penalty coefficients for falling cylinder using space-time XFEM
Method Penalty Coefficients

Nitsche’s method for FSI ηfsi = αfsiEs, αfsi = 0.1s/m
Nitsche’s method for dummy-displacement ηd = αdEs, αd = 20m−1

face-oriented ghost-penalty method αgp
Us = αgp

Ud = αgp
V s = αgp

vf
= 0.05, αgp

pf
= 0.005

of 5× 10−4 relative to the norm of the initial residual.

Figures 7.17 - 7.21 give time histories of the simulation using the Lagrangian-immersed

FSI method with the space-time XFEM. The sizes of the spatial and temporal discretization

are h = 1/11m = 0.009m and ∆t = 0.2/3s = 0.067s, respectively. Figures 7.17 and 7.18

are velocity distributions of the solid and fluid phase. The meshed region marks the solid

cylinder. Figures 7.19 and 7.20 shows the fluid pressure pf and the fluid in-line effective

shear stress qf defined by principal stresses: qf = |σf
1 − σ

f
2 |. Figure 7.21 shows the history

of the deformed Lagrangian system ΩL colored by the displacement U s
x in x direction. The

yellow circles represent the Lagrangian interface and the region outside of this interface is

the dummy displacement domain ΩD. Figures 6.54 - 6.56 in Section 6.6.4 show the results

of the same problem when the Lagrangian-immersed FSI method with the XFEM using and

time stepping scheme was used, using h = 1/11m and ∆t = 0.2/3s. This approach diverged

due to the numerical interpolation errors and incorrect approximation of time derivatives

caused by the moving interface. On the other hand, the Lagrangian-immersed FSI using the

space-time XFEM predicts smooth state variable fields; no oscillations are observed.
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Figure 7.17: History of vx (Lagrangian-immersed FSI using space-time XFEM)

Figure 7.18: History of vy (Lagrangian-immersed FSI using space-time XFEM)
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Figure 7.19: History of pf (Lagrangian-immersed FSI using space-time XFEM)

Figure 7.20: History of qf (Lagrangian-immersed FSI using space-time XFEM)
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Figure 7.21: History of U s
x (Lagrangian-immersed FSI using space-time XFEM)

The stability of the Lagrangian-immersed FSI method using the space-time XFEM is

remarkable especially when considering the distribution of the fluid force acting on the solid

cylinder. Figures 7.22 and 7.23 show the fluid forces Fx and Fy acting on the cylinder. Blue

lines represent the contributions of the fluid pressure and red lines represent the contributions

of the fluid velocity, respectively. Black lines represent the total fluid force, which is the

summation of blue and red lines. In each figure, the left column represents the XFEM with

a time stepping scheme, and the right column represents the space-time XFEM. Results

in the upper row use a larger time increment ∆t = 0.2s (h = 1/11m). Results in the

lower row use a three times smaller time increment ∆t = 0.2/3s. The bottom right graphs

correspond to Figures 7.17 - 7.19 (space-time XFEM using h = 1/11m and ∆t = 0.2/3s).

The equivalence of the proposed space-time XFEM and the space-time XFEM based on the

simplex triangulation is demonstrated in Appendix F.
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Figure 7.22: Comparison of Fx (XFEM and space-time XFEM)

Figure 7.23: Comparison of Fy (XFEM and space-time XFEM)
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Focusing on the graphs in the left columns of Figures 7.22 and 7.23, Fx and Fy computed

by the XFEM highly oscillate and the XFEM using finer time increment (∆t = 0.2/3s:

bottom left graph) even diverged. In particular, the oscillation of the contribution of the

fluid hydrostatic pressure (blue lines) is significantly larger. On the other hand, the space-

time XFEM (right column) does not suffer from the oscillations and no divergence at the

smaller time increment.

Figure 7.23 shows the comparison of Fy using the XFEM and the space-time XFEM.

Focusing on the upper row (∆t = 0.2s and h = 1/11m), the general trends in both the

standard XFEM (left) and the space-time XFEM (right) are similar. However, the space-time

XFEM obtains a smoother distribution of Fx than the XFEM. The difference between the

XFEM and the space-time XFEM is remarkable when a smaller time increment ∆t = 0.2/3s

is used. The oscillations of Fy computed by the XFEM using a smaller time increment

(bottom left graph) are larger than one of the XFEM using a larger time increment (top

left graph). This indicates that the spikes at the top left graph are caused by the temporal

interpolation error of the XFEM due to a moving interface. These spikes are not due to an

approximation error because of a overly coarse temporal discretization. On the other hand,

the space-time XFEM (right column) can get smoother distribution. However, there are some

spikes at the bottom right figure (space-time XFEM). These spikes are also observed when

the simplex triangulation approach is used for the space-time integration; see Appendix F.

Therefore, these spikes are not caused by the proposed elementwise temporal layer approach.

Other factors, such as the FSI coupling between non-matching interfaces, enforcing interface

conditions by Nitsche’s method or Lagrange multiplier method, and the fluid stabilization

methods, might cause these spikes.

Forces at non-matching interfaces shown in Figures 7.22 and 7.23 play an important role

in FSI. Figures 7.24 and 7.25 illustrate the momentum Px and Py in x and y direction of the

solid domain, the fluid domain and the total system. Px and Py are results of the FSI (force
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acting on non-matching interfaces) and transmitted between solid and fluid phase. In these

figures, red and blue lines indicate the momentum of the solid and fluid domain, respectively.

Black lines show the total momentum of the entire FSI system including both solid and fluid

phase. As the entire system is fixed, the total momentum should be zero in both x and y

direction. The columns in these figures correspond to the computational method (XFEM

or space-time XFEM) and the rows represent different time increments. The upper row is a

larger time increment ∆t = 0.2s and the lower row is a finer time increment ∆t = 0.2/3s.

The size of the spatial discretization is h = 1/11m.

Figure 7.24 shows the momentum Px in x direction using the XFEM and the space-time

XFEM. The conservation of the total momentum is satisfied when the space-time XFEM is

used. The momentum is transmitted between the solid and fluid. The solid cylinder moves

towards the positive x direction until 7.22s and then, the direction of the motion is reverted.

The momentum of the fluid (blue line) has the opposite tendency compared to the momentum

of the solid (red line). On the other hand, oscillations of Px occur when the standard XFEM

with a finer time increment is used (bottom left graph). The oscillations of the momentum

are created by the error of the fluid force Fx in Figure 7.22. Furthermore, the conservation

of momentum is violated at the bottom left graph. Figure 7.25 illustrates the momentum

Py in y direction. The space-time XFEM (right column) satisfies the conservation of the

momentum in y direction without divergence. The results in Figures 7.22 - 7.25 suggest

that the space-time XFEM features improved stability and accuracy over the conventional

combination of the XFEM with a time stepping scheme.
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Figure 7.24: Comparison of Px (XFEM and space-time XFEM)

Figure 7.25: Comparison of Py (XFEM and space-time XFEM)
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Finally, the errors of the total fluid force and the total momentum illustrated by black

lines in Figures 7.22 - 7.25 are examined. This study uses a time increment ∆t = 0.2s as

a time increment and the spatial size dependency of the force and momentum errors are

computed. The errors of individual force and momentum components are defined as follows:

L2Error
(
F tot
x

)
=

√√√√∫ tf
ti
dt (F tot

x − F tot
x−ref)

2∫ tf
ti
dt F tot

x−ref
2

, (7.46)

L2Error
(
F tot
y

)
=

√√√√∫ tf
ti
dt (F tot

y − F tot
y−ref)

2∫ tf
ti
dt F tot

y−ref
2

, (7.47)

Error
(
P tot
x

)
=

√
(tf − ti)−1

∫ tf

ti

dt P tot
x

2 , (7.48)

Error
(
P tot
y

)
=

√
(tf − ti)−1

∫ tf

ti

dt P tot
y

2 , (7.49)

where ti and tf are initial and final time for the evaluation of these errors. ti = 0.4s and

tf = 8.5s are used in this numerical example. The L2 force errors are defined using the

reference solution. The reference solution is the result using the space-time XFEM with

h = 1/11m and ∆t = 0.2s. The momentum errors are time averages of the deviation from

zero. The reason not to use a relative error for the momentum is that the total momentum

P tot
x and P tot

y should be zero based on the conservation law. Blue markers show the errors

of the XFEM with a time stepping scheme. Red markers show the errors of the space-time

XFEM. The blue and red dashed lines represent the fitting of data using the least square

fitting method.

In Figures 7.28 and 7.29, the rate of convergence of the space-time XFEM uses data with

h < 0.133m. In addition, data of the error of P tot
x vary widely because the absolute value of

P tot
x is much smaller than P tot

y . The computation of the rate of convergence of the XFEM

in Figure 7.28 is not computed because its data highly oscillates, and it is hard to extract

a trend. The rates of convergence of the standard XFEM are smaller than the ones of the

space-time XFEM, due to the temporal interpolation errors by a moving interface. On the
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other hand, the errors of the space-time XFEM diminish with the refinement of the spatial

discretization and converge quickly with the higher rates of convergence than the standard

XFEM.

Figure 7.26: L2 error of force in x: F tot
x Figure 7.27: L2 error of force in y: F tot

y

Figure 7.28: Error of momentum in x: P tot
x Figure 7.29: Error of momentum in y: P tot

y
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7.4.2 Turek-Hron FSI3 Benchmark Problem

The second numerical example of the Lagrangian-immersed FSI method using the space-

time XFEM is the well-known transient FSI benchmark problem typically referred to the

Turek-Hron FSI3 problem proposed by Turek and Hron [111]. The fluid phase is modeled by

the incompressible Navier-Stokes equations and the solid phase is modeled by a compressible

St. Venant-Kirchhoff material, (7.39) and (7.40), which considers finite strains but assumes

the linear response. In the Turek-Hron FSI3 problem, a fixed cylinder and an elastic flexible

beam connected to the cylinder are surrounded by fluid. This benchmark problem is designed

to operate in the incompressible laminar regime and periodic oscillations of the flexible beam

are obtained due to the self-induced oscillation of fluid flow.

7.4.2.1 Geometry of Turek-Hron FSI3

The geometry of Turek-Hron FSI3 problem is shown in Figures 7.30 and 7.31. Figure 7.30

displays the geometry of the Eulerian system ΩE in the Lagrangian-immersed FSI method.

Ωf
E is the fluid phase and the entire domain ΩE is used in the level set projection method.

The inlet flow is prescribed at the left edge that is the inlet boundary Γf
inlet. The light

edge is the outlet boundary with “do-nothing” boundary conditions (traction-free boundary

conditions) denoted by Γf
free. The top and bottom edges are the boundaries Γf

no-slip with

no-slip boundary conditions. ΓE-fix refers to the FSI interface where the no-slip boundary

conditions are applied around the cylinder. ΓE-int is the standard FSI interface around the

elastic beam.



www.manaraa.com

222

Figure 7.30: Model of Eulerian system ΩE (Turek-Hron FSI3)

Based on the Lagrangian-immersed FSI method, Lagrangian and Eulerian meshes are

independently defined. Figure 7.31 is the geometry of the Lagrangian system ΩL0. The

domain colored by light blue is the solid domain Ωs
L0-dbc corresponding to the fixed cylinder.

The pink domain is the solid domain Ωs
L0 corresponding to the flexible elastic beam. Other

domains are the dummy solid domain. The domain colored by dark gray is denoted by Ωd
L0-dbc

and always fixed by the Dirichlet boundary condition. The domain colored by light gray is

denoted by Ωd
L0 is the flexible dummy-displacement domain that follows the deformation of

Ωs
L0. ΓL0-fix is the undeformed Lagrangian interface where the no-slip boundary conditions

are applied and corresponds to ΓE-fix. ΓL0-int is the undeformed Lagrangian interface for FSI.

The FSI boundary integrals are performed between non-matching interfaces ΓE-int and ΓL-int

(deformed interface of ΓL0-int). The geometry parameters are summarized in Table 7.4.

Figure 7.31: Model of undeformed Lagrangian system ΩL0 (Turek-Hron FSI3)
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Meshes of the Eulerian and Lagrangian system are shown in Figures 7.32 and 7.33. In

the Eulerian system (Figure 7.32), finer rectangular elements (2
3
h×h: size in x is 2

3
h and size

in y is h) are used in x < 2HE, and coarser rectangular elements (2h×h) are used in another

region. In the Lagrangian system (Figure 7.33), finer rectangular elements (4
9
h × 1

9
h) are

used in the region of yc − hL/2 ≤ y ≤ yc + hL/2. Otherwise, square elements (4
9
h× 4

9
h) are

used. The representative elemental length is h = 8.54× 10−3m in this numerical example.

Figure 7.32: Mesh of Eulerian system (Turek-Hron FSI3)

Figure 7.33: Mesh of Lagrangian system (Turek-Hron FSI3)

Table 7.4: Geometry of Turek-Hron FSI3
Description Parameter (m)

cylinder center position C = (xc, yc) = (0.2, 0.2)
cylinder radius rc = 0.05
reference length D = 2rc = 0.1
elastic beam length lb = 0.35
elastic beam height hb = 0.02
reference point (at t = 0) A = (0.6, 0.2)
channel length of Eulerian system LE = 2.50
channel height of Eulerian system HE = 0.41
origin of Lagrangian system (xL, yL) = (0.14, 0.14)
length of Lagrangian system LL = 0.47
height at right edge of Lagrangian system hL = 0.04
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7.4.2.2 Structural Test (Turek-Hron CSM1 Problem)

The structural dynamic response was first computed as a preliminary test for the Turek-

Hron FSI3 problem. This structural test is well-known as Turek-Hron CSM1 problem which

is a steady-state problem of the elastic beam (red region with rc ≤ x ≤ xc+ rc+ lb in Figure

7.31). The beam is deformed by the body force Bs within the solid domain Ωs
L0. This test is

a purely structural test and thus, the fluid is omitted. In addition, the dummy displacement

domain Ωd
L0 is also omitted in this test. The elastic beam is modeled by the compressible

St. Venant-Kirchhoff material: (7.39) and (7.40), and its material parameters are given in

Table 7.5.

Table 7.5: Physical parameters of Turek-Hron CSM1
Description Parameter

Solid Density ρs = 1000kg/m3

Young’s modulus Es = 5.6MPa
Poisson’s ratio νs = 0.4
artificial viscosity αs = 0s−1

body force Bs = (0,−2)m/s2

initial velocity V s
ini = (0, 0)m/s

As the Turek-Hron CSM1 test is a steady-state problem, the standard XFEM and the

backward Euler method (BDF1) are used in this test. The weak form of the governing

equations has only the following contributions:

Rs
m(δU

s; {U s,V s}) +Rs
uv(δV

s; {U s,V s}) +Rgp
L ({δU s, δV s}; {U s,V s}) = 0 . (7.50)

Details of (7.50) are discussed in Section 6.4. The penalty coefficients for the face-oriented

ghost-penalty method are set as αgp
Us = αgp

V s = 0.05. The time increment for BDF1 is

∆t = 1020s in this case. Newton’s method using a direct solver is used as a solution method

and the convergence criterion requires a drop of the norm of the residual of 10−6 relative to

the norm of the initial residual.

Figure 7.34 shows the deformation of the Turek-Hron CSM1 problem. The black domain



www.manaraa.com

225

shows the initial configuration of the elastic beam and the colored domain shows the deformed

configuration with values of displacement U s
y in y direction. Measures of this problem are

the tip displacements at point A marked by the green letter A in Figure 7.34.

Figure 7.34: Deformation of Turek-Hron CSM1

Figure 7.35: Convergence of tip displacements (Turek-Hron CSM1)

Table 7.6: Numerical results of Turek-Hron CSM1
U tip
x (mm) U tip

y (mm)

[111] -7.19 -66.10
Nagai -7.08 -65.54

Figure 7.35 illustrates the convergence study of the tip displacements U tip
x and U tip

y in

x and y direction. As the mesh is refined, converged values of the tip displacements are
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obtained. Table 7.6 is the comparison between the reference work (Turek and Hron [111])

and this research (Nagai). As can be seen in Table 7.6, the tip displacements agree well.

7.4.2.3 Turek-Hron FSI3 Problem

In the following, the Turek-Hron FSI3 problem (transient FSI computation) is studied.

The summary of physical parameters is given in Table 7.7.

Table 7.7: Physical parameters of Turek-Hron FSI3
Description Parameter

Solid Density ρs = 1000kg/m3

Young’s modulus Es = 5.6MPa
Poisson’s ratio νs = 0.4
artificial viscosity αs = 0s−1

body force Bs = (0, 0)m/s2

initial velocity V s
ini = (0, 0)m/s

Fluid Density ρf = 1000kg/m3

kinematic viscosity νf = 10−3m2/s
body force bf = (0, 0)m/s2

reference velocity v̄x = 2m/s
Dimensionless Reynolds number Re = v̄xD/ν

f = 200
Parameters Strouhal number St = f̄D/v̄x = 0.05 (f̄ = 1s−1)

Ratio of density β = ρs/ρf = 1
Ae = Es/(ρf v̄2x) = 1400

The boundary conditions in the Eulerian space-time slab Qn
E (Qn

E = ΩE ⊕ T n) are as

follows:

No-slip BCs: vfx = vfy = 0 on P n,f
E-noslip and P n

E-fix , (7.51)

Parabolic inlet flow: vfx(0, y, t) = 6v̄x
y(y −HE)

H2
E

θ(t) on P n,f
E-inlet , (7.52)

vfy (0, y, t) = 0 on P n,f
E-inlet , (7.53)

where P n,f
E-noslip and P n,f

E-inlet are the space-time interfaces corresponding to Γf
noslip and Γf

inlet in

Figure 7.30 respectively. The inlet velocity is ramped up by the following smoothing function
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θ(t):

θ(t) =


1−cos(πt/2)

2
if t < 2s ,

1 otherwise .

(7.54)

The boundary conditions in the undeformed Lagrangian space-time slab Qn
L0 (Qn

L0 =

ΩL0 ⊕ T n) are as follows:

Fixed Lagrangian domain: U s
x = U s

y = 0 in Qn,s
L0-dbcand Q

n,d
L0-dbc , (7.55)

V s
x = V s

y = 0 in Qn,s
L0-dbcand Q

n,d
L0-dbc , (7.56)

No-slip BCs: V s
x = V s

y = 0 on P n
L0-fix , (7.57)

where Qn,s
L0-dbc, Q

n,d
L0-dbc and P

n
L0-fix correspond to spatial properties Ωs

L0-dbc, Ω
d
L0-dbc and ΓL0-fix

in Figure 7.31, respectively.

The weak form of Turek-Hron FSI3 problem is residuals without the contribution of

the contact R̃s
c and identical to the weak form of the first numerical example, (7.45). The

Helmholtz smoothing method (7.7) is applied in the dummy displacement domain because

the structure does not undergo rigid body rotations. The penalty factors for the Turek-Hron

FSI3 problem are summarized in Table 7.8.

Table 7.8: Penalty coefficients for Turek-Hron FSI3
Method Penalty Coefficients

Nitsche’s method for FSI ηfsi = αfsiEs, αfsi = 1/56s/m
Nitsche’s method for dummy-displacement ηd = αdEs, αd = 20m−1

face-oriented ghost-penalty method αgp
Us = αgp

Ud = αgp
V s = αgp

vf
= 10−2, αgp

pf
= 10−3

In this numerical example, the size of the temporal discretization is set to either ∆t =

0.005s or ∆t = 0.0025s. Three temporal slices are defined in each temporal layer based on

the elementwise temporal layer approach. Newton’s method with a direct solver is used.

The convergence criterion at the Newton iteration is a drop of the norm of the residual of

5× 10−3 relative to the norm of the initial residual.
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In this Turek-Hron FSI3 problem, periodic oscillations of the flexible beam are excited

by the fluid flow. Figures 7.36 - 7.40 show the time histories within one period (from 7.09s to

7.27s) using ∆t = 0.005s. Figures 7.36 and 7.37 shows the evolutions of the velocity fields in

the solid and fluid phases. The meshed areas represent the deformed solid domain Ωs
L defined

in the Lagrangian system, and the fluid domain Ωf
E is defined in the Eulerian system. The

numerical results show that oscillations of the solid beam are excited by the fluid flow and

the distribution of fluid velocity is affected by the deformation of the beam. In addition, the

continuity of velocities between solid and fluid is enforced. Figure 7.38 shows the evolution

of the fluid vorticity ωf
z in z direction. The lines colored by gray represent the contour line

of the fluid vorticity. Vortex shedding is observed as the flow passes the flexible solid beam.

Figures 7.39 and 7.40 focus on the time histories of the structural response. The left

column is the velocity in y direction in the fluid phase. The meshed areas represent the

deformed solid domain Ωn,s
L and the other domain is the fluid domain Ωn,f

E . The middle and

right columns are the displacement U s
y in y direction and the von Mises stress σs

VM (Cauchy

stress) of the solid domain. The domain without mesh is the dummy displacement domain

Ωn,d
L in the middle and right columns of Figures 7.39 and 7.40.
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Figure 7.36: History of velocity in x (Turek-Hron FSI3, ∆t = 0.005s)
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Figure 7.37: History of velocity in y (Turek-Hron FSI3, ∆t = 0.005s)
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Figure 7.38: History of fluid vorticity ωf
z (Turek-Hron FSI3, ∆t = 0.005s)
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Figure 7.39: Structural deformations (Turek-Hron FSI3, 7.09s-7.18s, ∆t = 0.005s)
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Figure 7.40: Structural deformations (Turek-Hron FSI3, 7.18s-7.27s, ∆t = 0.005s)
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The accuracy of the simulation results for the Turek-Hron FSI3 problem is monitored by

the tip displacements, U tip
x and U tip

y , at point A of Figure 7.30, the drag force FD and the

lift force FL on the interface Γsolid around the solid structure including both the cylinder and

beam. FD and FL are computed by the fluid traction as follows:

(FD FL)
T =

∫
Γsolid

dΓ σfnf (7.58)

The reference results are taken from [111] and shown in Figure 7.41. These results are

computed by the ALE-FSI method and the FEM with ∆t = 0.0005s. The displacement in

x direction and the corresponding drag force have about a frequency that is twice as large

than the displacement in y direction and the lift force. Smooth oscillations were obtained

for all quantities of interest.

Figure 7.41: Reference results of Turek-Hron FSI3 (Turek and Hron[112], ∆t = 0.0005s)
(unit of displacement = [m], unit of force = [N])



www.manaraa.com

235

Figure 7.42: Tip displacements using Lagrangian-immersed FSI (Turek-Hron FSI3, ∆t =
0.005s)

(•: referenced data [111] digitized from Figure 7.41)

Figure 7.43: Drag and lift forces using Lagrangian-immersed FSI (Turek-Hron FSI3, ∆t =
0.005s)

(•: referenced data [111] digitized from Figure 7.41)

Figures 7.42 and 7.43 show the results of U tip
x , U tip

y , FD and FL based on the proposed

Lagrangian-immersed FSI method using the space-time XFEM with ∆t = 0.005s. The time

increment used in these figures is ten times larger than the one in the reference results. The

black dots represent the digitized reference data [111] from Figure 7.41 and shifted along time

to overlap onto current results. Before reaching the developed stage such as Figures 7.42 and
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7.43, the path of the time evolution is not unique because of the high nonlinearity of geometry.

Thus, shifting data along time is reasonable in order to compare the results of the developed

stage. From Figure 7.42, one can observe that the amplitude of the tip displacement at

point A agrees well with the reference [111]. While the period of the oscillation is slightly

shorter than the reference, the overall tendency in terms of amplitude and period is correctly

reproduced by the Lagrangian-immersed FSI method using the space-time XFEM. In Figure

7.43, the history of the lift force FL has almost the same period as the reference, but its

amplitude is larger than the reference. The reason for the difference of the amplitude of

FL is the difference of the time increment ∆t. As proposed computational results using the

space-time XFEM are computed by ten times larger ∆t than the reference work, peaks of

FL become sharper because ∂FL

∂t
changes around the peaks and larger ∆t prevent capturing

smooth distribution around the peaks. The fact that the slope around FL = 0 is similar to

the reference work supports this discussion. The period of FD is also almost identical to the

reference work. On the other hand, there is a big discrepancy between current results and

reference results in terms of the value of FD. This discrepancy is discussed later.

Figures 7.44 and 7.45 show the results with ∆t = 0.0025s. In these figures, a smaller

time increment ∆t = 0.0025s is used to check the influence of the temporal discretization on

the convergence of the space-time XFEM.
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Figure 7.44: Tip displacement using Lagrangian-immersed FSI (Turek-Hron FSI3, ∆t =
0.0025s)

(•: referenced data [111] digitized from Figure 7.41)

Figure 7.45: Drag and lift forces using Lagrangian-immersed FSI (Turek-Hron FSI3, ∆t =
0.0025s)

(•: referenced data [111] digitized from Figure 7.41)

There is no significant difference with respect to the tip displacements U tip
x and U tip

y

(Figures 7.42 and 7.44). On the other hand, differences exist in the time evolution of the drag

force FD and the lift force FL (Figures 7.43 7.45). FL computed by smaller time increment

∆t = 0.0025s is closer to the reference solution than FL computed by ∆t = 0.005s, especially

at its peaks. This is because a smaller ∆t could capture more accurately the change of
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Figure 7.46: Difference of drag force from reference (Turek-Hron FSI3, ∆t = 0.0025s)
(•: referenced data [111] digitized from Figure 7.41)

FL:
∂FL

∂t
. FD computed by a smaller time increment ∆t = 0.0025s is much closer to the

reference solution than FD computed by ∆t = 0.005s. While FD at the peak has a similar

value as the reference solution, smaller FD values still differ significantly. Figure 7.46 shows

the individual contributions of FD. The green and red lines represent the total FD and the

contribution of pressure for FD, respectively. Domains colored by blue denote domains where

there is big difference between the computed total FD (green line) and the reference total

FD (black dots). These results suggest that the lower half of the oscillation of total FD has

a flat distribution which causes the discrepancy from the reference solution. 90% of FD is

the contribution of fluid pressure pf (red line) and this flat distribution is originated from

this pressure contribution. This discrepancy is also observed in the computation using the

space-time XFEM based on the simplex triangulation approach (Chapter F) and thus, this

issue is not caused by the proposed space-time integration. The difference in the stabilization

method for convection term and incomprehensibility of the INS fluid, the method of the FSI

integral (ALE-FSI and non-matching interface integral using the Lagrangian-immersed FSI

method) and the treatment of interface (fixed interface and moving interface) may cause this

discrepancy against the reference work. This issue is still unclear and needs more attention.
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Focusing on the smoothness of FD and FL, Figures 7.43 and 7.45 are less smooth than

the reference work (Figure 7.41). As discussed in Section 7.4.1, the roughness in Fig-

ures 7.43 and 7.45 might be caused by FSI between non-matching interfaces based on the

Lagrangian-immersed FSI method, the coupling methods (Nitsche’s method of Lagrange

multiplier method) and the stabilization method for fluid. The discussion of Figure 7.45

above suggests that the fluid pressure causes the roughness of FD and FL in Figure 7.45.

This instability of the fluid pressure should be examined in the future. It should be noted

that the proposed space-time integration based on the elementwise temporal layer is not the

cause of this instability (Appendix F).

Table 7.9 summarizes the accuracy study of the Turek-Hron FSI3 problem. Each measure

is shown by “mean ± amplitude [frequency]”. The mean and amplitude of these measures

are computed by taking maximum and minimum values. In addition, the frequency of the

oscillations of these measures is computed from their periods:

mean =
1

2
(max + min) , (7.59)

amplitude =
1

2
(max−min) , (7.60)

frequency =
1

period
. (7.61)

In Table 7.9, ‘A’ and ‘B’ in the first column are the results of the Lagrangian-immersed

FSI method using the space-time XFEM with ∆t = 0.005s and ∆t = 0.0025s respectively.

Computed values are obtained by fitting data from 7.9s to 8.1s where the oscillations are

completely developed. As the Turek-Hron FSI3 problem is a well-known benchmark problem,

there are several numerical studies of this problem. Reference results summarized in Table

7.9 are Turek, Hron, et al. [111, 112], Breuer, Mayer, et al. [113], Chabannes et al. [114],

Sandboge [115], and Frei and Richter [116]. The last paper [116] uses the full-Eulerian FSI

method and others are based on the ALE-FSI method.

The results of [111, 112, 114, 115] agree well. The results of [113, 116] deviate from
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Table 7.9: Numerical results of Turek-Hron FSI3
(mean ± amplitude [frequency(Hz)])

U tip
x (mm) U tip

y (mm) FD (N) FL (N)

[111] −2.69± 2.53 [10.9] 1.48± 34.38 [5.3] 457.3± 22.66 [10.9] 2.22± 149.78 [5.3]
[112] −2.88± 2.72 [10.9] 1.47± 34.99 [5.5] 460.5± 27.74 [10.9] 2.50± 153.91 [5.5]
[113] −4.54± 4.34 [10.1] 1.50± 42.50 [5.1] 467.5± 39.50 [10.1] 16.2± 188.70 [5.1]
[114] −2.88± 2.75 [10.9] 1.35± 34.72 [5.4] 459.3± 29.84 [10.9] 3.19± 171.20 [5.4]
[115] −2.83± 2.78 [10.8] 1.35± 34.75 [5.4] 458.5± 24.00 [10.8] 2.50± 147.50 [5.4]
[116] −2.23± 2.16 [-] 1.90± 30.86 [-] 468.9± 22.80 [-] −9.40± 193.6 [-]
A −2.80± 2.63 [11.1] 1.10± 36.00 [5.6] 489.5± 14.86 [11.1] 9.44± 199.23 [5.6]
B −2.63± 2.44 [11.1] 1.11± 33.59 [5.6] 461.8± 20.00 [11.1] 9.79± 181.01 [5.6]

([111, 112, 113, 114, 115]: ALE-FSI, [116]: Full-Eulerian FSI)
(A: result using ∆t = 0.005s, B: result using ∆t = 0.0025s)

[111, 112, 114, 115] and are there for not further considered. As it can be seen from Figure

7.42 and Table 7.42, the deformations of the flexible beam using the Lagrangian-immersed

FSI method and the space-time XFEM agree well with the reference results. On the other

hand, the results of FD and FL deviate from [111, 112, 114, 115]. The deviation of FL is

likely due to the larger time increment ([111, 112]:∆t = 5 × 10−4s, [116]:∆t = 2.5 × 10−4s,

A:∆t = 5 × 10−3s, B:∆t = 2.5 × 10−3s). But the time evolution of FL is similar to [111]

as compared in Figure 7.45. The reason of the deviation of FD from the reference results is

likely due to instability of the fluid pressure as discussed previously.

As the Turek-Hron FSI3 benchmark problem is a very challenging numerical problem,

some of FSI method cannot compute this benchmark problem or do not show quantitative

argument as shown in Table 7.9. The full-Eulerian FSI method [116] could not compute

reasonable deformations in comparison with the reference result of [111], even if a much

smaller time increment is used (∆t = 2.5 × 10−4s). This indicates the limitation of the

capability of the Eulerian approach for FSI analysis.

Consequently, the Lagrangian-immersed FSI method using the space-time XFEM is a

promising method to compute FSI problems with large deformations. The issue in terms of

the evaluation of the fluid forces acting on a structure must be examined as a future task.
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7.4.3 Multibody FSI-contact problem using space-time XFEM

The last numerical example is a multibody FSI-contact problem based on the combination

of the Lagrangian-immersed FSI method and the stabilized Lagrange multiplier method for

contact using the space-time XFEM.

The geometry and the material of this example is identical to the numerical example

described in Section 6.6.4. There are five solid structures modeled by a neo-Hookean material,

(6.71) - (6.74), and these solid structures are defined within separate Lagrangian domains

Ωi
L (i = 1 ∼ 5). Each Lagrangian domain Ωi

L contains a solid domain Ωi
S and a dummy

displacement domain Ωi
D: Ωi

L = Ωi
S ∪ Ωi

D. Figures 6.27 - 6.31 and Table 6.6 report on the

geometry of each Lagrangian domain. The physical quantities are summarized in Table 6.7.

The spatial discretizations in each Lagrangian and the Eulerian systems are summarized in

Table 6.8.

The weak form of the governing equations for this example is identical to (7.4) including

the stabilized Lagrange multiplier method for contact. Details of the weak form is given in

Section 7.2. In addition, penalty coefficients for Nitsche’s method, the face-oriented ghost-

penalty method and the stabilized Lagrange multiplier method are summarized in Table 7.10.

The penalty factor γc for the stabilized Lagrange multiplier method is defined as follows:

γc = αc

Es
i + Es

j

hsi + hsj
(i, j = 1 ∼ 5, i ̸= j) , (7.62)

where Es
i and hsi are the Young’s modulus and the size of the spatial discretization of the

solid domain Ωi
S defined in the i-th Lagrangian domain Ωi

L. Ē
s is a representative value of

the Young’s modulus and set as Ēs = 1MPa in this example.

In this numerical example, the size of the temporal discretization is set to ∆t = 0.1s and

three temporal slices are defined in each temporal layer based on the elementwise temporal

layer approach. Newton’s method with a direct solver are used. The convergence criterion

for the Newton iteration requires a drop of the norm of the residual of 5 × 10−3 relative to



www.manaraa.com

242

Table 7.10: Penalty coefficients for FSI-contact problem using space-time XFEM
Method Penalty Coefficients

Nitsche’s method for FSI ηfsi = αfsiĒs, αfsi = 0.1s/m
Nitsche’s method for dummy-displacement ηd = αdĒs, αd = 20m−1

stabilized Lagrange multiplier method γc = αc(E
s
i + Es

j )/(h
s
i + hsj), αc = 5m−1

face-oriented ghost-penalty method αgp
Us = αgp

Ud = αgp
V s = αgp

vf
= 0.05, αgp

pf
= 0.005

the norm of the initial residual. In addition, the adaptive time-stepping scheme is applied

to ensure the convergence of the Newton iteration; see (6.92) in Section 6.6.3.

Figures 7.47 - 7.61 illustrate the history of the distributions of the velocity of both the

solid and fluid; V s
i and vfi , the fluid pressure pf and the fluid in-plane effective shear stress qf

(qf = |σ1−σ2|/2) using ∆t = 0.1s and h = 1/11m. Figure 7.47 shows the initial configuration

of the FSI-contact problem. Figures 7.48 - 7.50 are snapshots in the time range dominated by

FSI without contact. Figures 7.51 - 7.61 are snapshots of the FSI-contact response. Figure

7.61 shows the final time step of this numerical example (t ≃ 30s). Solid structures are in

contact with each other and the velocity of both the solid and fluid approaches zero.

Figure 7.47: FSI-contact problem using space-time XFEM (t = 0s, step0)
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Figure 7.48: FSI-contact problem using space-time XFEM (t = 1s, step10)

Figure 7.49: FSI-contact problem using space-time XFEM (t = 2.01875s, step23)
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Figure 7.50: FSI-contact problem using space-time XFEM (t = 3.01875s, step33)

Figure 7.51: FSI-contact problem using space-time XFEM (t = 4.025s, step44)
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Figure 7.52: FSI-contact problem using space-time XFEM (t = 4.975s, step54)

Figure 7.53: FSI-contact problem using space-time XFEM (t = 5.9875s, step66)



www.manaraa.com

246

Figure 7.54: FSI-contact problem using space-time XFEM (t = 7.0625s, step81)

Figure 7.55: FSI-contact problem using space-time XFEM (t = 8.06875s, step92)
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Figure 7.56: FSI-contact problem using space-time XFEM (t = 11.0625s, step129)

Figure 7.57: FSI-contact problem using space-time XFEM (t = 13.16785s, step150)
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Figure 7.58: FSI-contact problem using space-time XFEM (t = 15.5125s, step180)

Figure 7.59: FSI-contact problem using space-time XFEM (t = 18.33125s, step220)
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Figure 7.60: FSI-contact problem using space-time XFEM (t = 25s, step297)

Figure 7.61: FSI-contact problem using space-time XFEM (t = 30.39375s, step385)
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Figure 7.62: Multibody contact in FSI-contact problem using space-time XFEM
(von Mises stress contours; Fluid is not visualized.)

Figure 7.62 shows von Mises stress (Cauchy stress) when the solid bodies are in contact.

After step124 (t > 10s), contact among more than two objects occurs.

The results in Figures 7.47 - 7.62 show that the Lagrangian-immersed FSI method using

the space-time XFEM can handle both fluid-structure interaction and complex multibody

contact simultaneously. These figures look similar to results of the Lagrangian-immersed FSI

method using the XFEM with a time stepping scheme described in Section 6.6.4. However,

the difference between the results using the space-time XFEM and the previous results using

the XFEM is highlighted by comparing the fluid forces and the momentum.

Figures 7.63 and 7.64 are comparisons of the fluid forces using the XFEM and the space-

time XFEM, respectively. The blue and red lines are contributions of the fluid hydrostatic

pressure and the fluid velocity, respectively. The black lines represent the total fluid forces

acting on solid structures and defined as the summation of blue and red lines. At the range

of 0 ≤ t ≤ 25s, the Eulerian interfaces ΓE move due to the deformations of the Lagrangian

solid structures. The fluid forces computed by the standard XFEM (left graphs) oscillate

due to the temporal interpolation errors caused by moving interfaces.
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Figure 7.63: Comparison of Fx (FSI-contact with XFEM and space-time XFEM)

Figure 7.64: Comparison of Fy (FSI-contact with XFEM and space-time XFEM)

In particular, these forces highly oscillate until 10s because the motion of the interfaces is

large in this region. On the other hand, the fluid forces computed by the space-time XFEM

(right graphs) have not spurious oscillations. This indicates that the space-time XFEM

correctly integrates the response in time even for moving interfaces. Small oscillations using

the space-time XFEM can be observed; these oscillations are assumed to be caused by the

non-matching space-time interfaces and multibody contact. In the range of 25 < t ≤ 30s, the

velocities of both the solid and fluid become very small and the system response is dominated

by contact. In this region, the fluid forces computed by the space-time XFEM oscillate more
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largely than forces computed by the XFEM. This may indicate that the conventional contact

formulation for the XFEM is more stable than the current contact formulation for the space-

time XFEM described in Section 7.3.5. This issue is still unclear and needs more attention.

Figure 7.65: Comparison of Px (FSI-contact with XFEM and space-time XFEM)

Figure 7.66: Comparison of Py (FSI-contact with XFEM and space-time XFEM)

Figures 7.65 and 7.66 show the comparisons of the momentum computed by the XFEM

and the space-time XFEM, respectively. The blue and red lines represent the momentum

of the fluid and solid phase, respectively. The total momentum is shown by black lines

as the summation of the solid and fluid momentum. These results show that the XFEM

and the space-time XFEM converge to the steady-states. Like the first numerical example
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(Section 7.4.1), the momentum Px and Py in x and y direction, are transmitted between

the solid and fluid. The conservation of the total momentum (summation of solid and fluid

momentum) should be satisfied. As the momentum is a result of the solid and fluid forces,

the fluid forces in Figures 7.63 and 7.64 influence the evolution of the momentum Px and

Py. A remarkable point is the violation of the conservation of momentum using the XFEM.

The yellow shaded regions in left graphs show large discrepancies from zero in the total

momentum using the XFEM. Such a large violation of the conservation is not observed in

results of the space-time XFEM. Oscillations using the space-time XFEM can be observed

in Figure 7.65; these oscillations are assumed to be caused by the non-matching space-time

interfaces and multibody contact, similar to the oscillations of the fluid forces. In the range of

25 < t ≤ 30s, the oscillations seem to be due to contact. While multibody contact is correctly

captured using the proposed contact formulation in the space-time XFEM, reconsideration of

the contact formulation for the space-time XFEM will be necessary to enhance the stability

of the FSI-contact problem.

Finally, the convergence of the Lagrangian-immersed FSI method using the space-time

XFEM is studied. Four models which have different size of the spatial discretization (h =

4/11, 7/2, 4/19 and 2/11m ≃ 0.364, 0.286, 0.211 and 0.182m) are used. As a remainder, h is

the representative size of the spatial discretization in this example and identical to the size

of the spatial discretization in the Eulerian system hE. The sizes of the spatial discretization

hiL0 of the Lagrangian systems 1-4 (i = 1 ∼ 4), are proportional to h as defined in Table 6.8.

The spatial discretization of Lagrangian system 5, which is a fixed concave structure at the

bottom, is constant (h5L0 = 0.1867m).

Figure 7.67 illustrates the trajectories of centroids of solid structures 1-4 using different

sizes of the spatial discretization. Figures 7.68 and 7.69 show comparisons of total fluid force

and total momentum using different sizes of the spatial discretization.

For the convergence study, the L2 errors of the solid displacements and the velocity at
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Figure 7.67: Trajectory of centroids of solid structures (space-time XFEM, ∆t = 0.1s)

Figure 7.68: Spatial size dependency of force (space-time XFEM, ∆t = 0.1s)

Figure 7.69: Spatial size dependency of momentum (space-time XFEM, ∆t = 0.1s)
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each centroid corresponding to Figure 7.67, the L2 errors of the fluid forces corresponding

to Figure 7.68, and the deviation of the total momentum from zero corresponding to Figure

7.69. The definitions of these errors are as follows:

L2Error
(
Ucent

)
=

√√√√∑4
j=1

∫ tf
ti
dt ∥U j

cent −U j
cent-ref∥2∑4

j=1

∫ tf
ti
dt ∥U j

cent-ref∥2
, (7.63)

L2Error
(
Vcent

)
=

√√√√∑4
j=1

∫ tf
ti
dt ∥V j

cent − V j
cent-ref∥2∑4

j=1

∫ tf
ti
dt ∥V j

cent-ref∥2
, (7.64)

L2Error
(
F tot
x

)
=

√√√√∫ tf
ti
dt (F tot

x − F tot
x−ref)

2∫ tf
ti
dt F tot

x−ref
2

, (7.65)

L2Error
(
F tot
y

)
=

√√√√∫ tf
ti
dt (F tot

y − F tot
y−ref)

2∫ tf
ti
dt F tot

y−ref
2

, (7.66)

Error
(
P tot
x

)
=

√
(tf − ti)−1

∫ tf

ti

dt P tot
x

2 , (7.67)

Error
(
P tot
y

)
=

√
(tf − ti)−1

∫ tf

ti

dt P tot
y

2 , (7.68)

where ti and tf are initial and final times for the evaluation of errors. ti = 0.4s and tf = 30s

are used to evaluate these errors. U i
cent and V i

cent represent the displacement and velocity

vectors at the centroid of the solid structure i defined in Ωi
L0. U i

cent-ref, V
i
cent-ref, F

tot
x−ref and

F tot
y−ref denote the reference solutions using the finest model: h = 2/11m.

Figure 7.70 shows the L2 errors of the solid displacements and the velocities at each

centroid. The convergence rates of both the displacements and velocities are almost identi-

cal because of the linear relationship between the solid displacements and velocities in the

governing equations; i.e. the displacement-velocity relationship (6.8).

Figure 7.71 shows the L2 errors of the fluid forces. The convergence of F tot
y is slower

than the one of F tot
x . As the contact is dominant in y direction because of the fall of the

solid structures, the high nonlinearity due to contact exists mainly in y direction and this

complex nonlinearity might cause the slower convergence in Fytot.
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Figure 7.70: L2 error of quantities at centroids (space-time XFEM, ∆t = 0.1s)
(reference model: h = 2/11m and ∆t = 0.1s using space-time XFEM)

Figure 7.71: L2 error of force (space-time XFEM, ∆t = 0.1s)
(reference model: h = 2/11m and ∆t = 0.1s using space-time XFEM)
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Figure 7.72: Error of momentum (space-time XFEM, ∆t = 0.1s)

Figure 7.72 shows the error of the conservation of the total momentum. The approxima-

tion to compute the rates of convergence in this figure uses only three points with h < 0.3m.

The violation of the conservation of momentum is reduced by mesh refinement for both P tot
x

and P tot
y . These studies suggest that the combination of the space-time XFEM and the

Lagrangian-immersed FSI method correctly treats the complex nonlinearity due to both FSI

and multibody contact.
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7.5 Discussion

This chapter presented the Lagrangian-immersed FSI method using the space-time XFEM.

The space-time XFEM based on the elementwise temporal layer approach (Chapter 3) is ap-

plied to the Lagrangian-immersed FSI method. The finite element discretization and the

XFEM enrichment is applied in both space and time. A simple implementation for inte-

grating the space-time discretization is realized based on the elementwise temporal layer

approach.

FSI is modeled between non-matching space-time interfaces defined by separate La-

grangian and Eulerian space-time slabs. The integration scheme for space-time FSI uses

techniques of computational contact mechanics, such as the master-slave concept, the node-

to-surface pairing and the gap equation for contact. The stabilized Lagrange multiplier

method and the level set projection method are expanded into the space-time formulations.

Three transient numerical examples were studied based on the Lagrangian-immersed FSI

method using the space-time XFEM. The first numerical example was a falling cylinder

within a fluid domain. This problem poses severe challenges for the conventional ALE-FSI

method because of large deformation. The second numerical example was a challenging

FSI problem known as the Turek-Hron FSI3 benchmark problem. It should be noted that

some of non-standard FSI methods cannot pass this benchmark problem. The Lagrangian-

immersed FSI method using the space-time XFEM could capture the complex deformations

of a flexible solid beam due to self-induced oscillation by fluid flow. The obtained results

agreed reasonably well with the ALE-FSI method. The deformation of the proposed approach

agrees well with the reference works. However, the fluid forces acting on the solid structure

have oscillatory behaviors and the drag force has a big discrepancy from the reference works.

This issue is still unclear and needs more attention. These two examples illustrate the

potential of the proposed method for FSI with large deformation without remeshing and

any additional treatment like the ghost fluid method. The third numerical example was
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a multibody FSI-contact problem. As an interface in the Eulerian system is treated as a

moving interface, there is no limitation with respect to contact and large deformations in

the Lagrangian-immersed FSI method. The space-time XFEM avoids temporal interpolation

errors due to moving interfaces. Stable and robust FSI-contact computation was achieved

by the proposed method.

Owing to the elegance of the fixed grid approach in a fluid domain and the space-time

formulation, the Lagrangian-immersed FSI method using the space-time XFEM is a promis-

ing method which has interesting capabilities for complex FSI-contact problems. The ability

to model large deformations and contact simultaneously within the FSI system presents

a significant process in simulating complex FSI problems. This method is not limited to

the fluid-structure interaction and also applicable to various types of complex multi-physics

problems including moving interfaces, such as the interaction between the Lagrangian and

Eulerian solids, the interaction of structure and electromagnetic fields and acoustic-structure

interaction. Unresolved issues of the Lagrangian-immersed FSI method using the space-time

XFEM include the presence of small fluctuations of the fluid forces around moving interfaces

as shown in Figures 7.22 and 7.23. This problem is assumed to be cause by non-matching

space-time interfaces. Revisiting the integration method between non-matching interfaces

might be necessary. Other coupling method for FSI like the Lagrange multiplier method

is worth considering instead of Nitsche’s method. While the studies in this chapter only

focus on spatially two-dimensional problems, it is necessary to expand this method into

three-dimensional problems.
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Conclusions

8.1 Summary

This thesis presented a space-time extended finite element method (space-time XFEM)

based on the elementwise temporal layer approach and its applications to fluid-structure

interaction (FSI) and contact problems.

The proposed space-time XFEM applies the Heaviside-enrichment strategy in both the

space and time. A simple space-time integration based on the summation of spatial inte-

gration at multiple temporal quadrature points was introduced as the elementwise temporal

layer approach. Each space-time element is subdivided into multiple temporal layers along

time by considering its intersection configuration. Furthermore, temporal integration points

are defined in each temporal layer. Each temporal layer is cut by planes on these points

parallel to the spatial domain. The cross sections created by this cut are called as the tem-

poral slices in this thesis. As the number of temporal slices in each temporal layer affects

the effective time increment, a larger number of slices is beneficial from the viewpoint to get

a faster convergence in terms of the time evolution. Integration points for a space-time vol-

ume are distributed on each temporal slice using the same numerical integration scheme used

in the standard XFEM. Integration points for space-time interface are set on a space-time

interface which has the same dimension as the spatial domain. As higher-dimensional de-

compositions of a space-time slab like the simplex triangulation method are not needed, the

proposed space-time XFEM eases significantly the implementation of the space-time integra-

tion. The space-time interface conditions are prescribed by Nitsche’s method. In addition,

the face-oriented ghost-penalty method is applied in the space-time XFEM for mitigating



www.manaraa.com

261

the ill-conditioning problem due to small intersected space-time elements.

The proposed space-time XFEM was applied to transient, spatially two-dimensional prob-

lems. The accuracy and stability of Nitsche’s method and the face-oriented ghost-penalty

stabilization for the space-time XFEM was studied with a elasto-dynamic problem and a

fluid problem known as DFG 2D-3 benchmark problem. While the numerical accuracy of

physical quantities that had a steady-state like behavior was quite similar in both methods,

the space-time XFEM could evaluate physical quantities that had a dynamic characteris-

tic more precisely than the spatial XFEM using the same time increment. The proposed

space-time XFEM was applied to a fluid problem with moving interfaces. The divergence of

the numerical solution was avoided successfully by the face-oriented ghost-penalty stabiliza-

tion and it was confirmed that the face-oriented ghost-penalty method was effective in the

space-time XFEM to stabilize the numerical computations, especially for moving interface

problems. As the XFEM suffer from temporal interpolation errors due to moving interfaces,

and additional treatments such as the ghost-fluid method are necessary for the stable tem-

poral interpolation. The space-time XFEM overcomes temporal interpolation errors due to

moving interfaces without the ghost-fluid method, and obtains dynamical quantities stably.

The space-time XFEM has a great advantage in terms of stability, accuracy and flexibility

for problems with moving interfaces.

The benefit of robust and stable mathematical treatment of moving interfaces using the

space-time XFEM enhances the flexibility of the computational methods for the FSI prob-

lems. In this thesis, non-standard FSI methods (non-ALE methods) using moving interfaces

were studied by considering the FSI-contact problems which are difficult to solve by the

conventional ALE-FSI method. As a preliminary study for the combination of the flexible

FSI method and the space-time XFEM, two non-standard FSI methods using the XFEM

were examined.

The full-Eulerian FSI method using the XFEM is one method which has the ability
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to treat the FSI-contact problems. The Eulerian description is applied in both the solid

and fluid domains and thus, its computation is performed in the fixed background mesh.

There is no limitation in terms of large deformation and contact. The conservative level

set function (CLSF) method is introduced to represent the FSI interfaces. While the full-

Eulerian FSI method was confirmed as an attractive method to compute FSI and large

deformations, a fine-scale time increment is needed for the computation of the convection

equations used in the level set function and the momentum equations. In addition, the

steady-state problems cannot be computed efficiently by the full-Eulerian FSI method. This

feature is a big disadvantage for the applications such as the optimization scheme.

The Lagrangian-immersed FSI method using the XFEMwas also proposed as a more flexi-

ble computational method for the FSI-contact problems than the Full-Eulerian FSI method.

In the Lagrangian-immersed FSI method, the solid and fluid phases are defined by the

Lagrangian and Eulerian descriptions, respectively. Meshes of the solid and the fluid are

spatially disconnected. FSI is computed between non-matching Lagrangian and Eulerian

interfaces using techniques of computational contact mechanics, such as the master-slave

concept, the node-to-surface pairing, and the gap equation. As the solid phase is defined by

the Lagrangian description, conventional contact formulations are directly applicable to the

FSI system, and the stabilized Lagrange multiplier method is used in this research. Thus,

the implementation of the contact formulation is much easier than with the full-Eulerian FSI

method. Interfaces in the Eulerian system are defined by the level set projection method to

capture the deformation of disconnected solid structures correctly. By introducing the level

set projection method into a monolithic solution strategy for the FSI system, the update of

geometry is automatically performed as the solution converges. Steady-state FSI problems

with large deformations were computed by the Lagrangian-immersed FSI method and the

XFEM. The ability to compute steady-state FSI problems with large deformations is a great

advantage for the applications such as the optimization. A transient multibody FSI-contact
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problem was also studied. The Lagrangian-immersed FSI method using the XFEM was able

to predict the response of a complex FSI-contact system without the limitation on large de-

formation as the ALE-FSI method has. While the Lagrangian-immersed FSI method using

the XFEM is an attractive method in terms of the high capability for the FSI-contact prob-

lems and the easiness of the implementation, the drawback of temporal interpolation errors

by moving interfaces exist due to the time stepping schemes. Thus, this method should be

combined with the space-time XFEM for the accurate evaluation of the effect of moving

interfaces used in the fluid domain.

Finally, the combination of the space-time XFEM and the Lagrangian-immersed FSI

method was proposed. FSI is modeled between non-matching space-time interfaces defined

by separate Lagrangian and Eulerian space-time slabs. The integration scheme for space-time

FSI uses techniques of computational contact mechanics. The stabilized Lagrange multiplier

method and the level set projection method are expanded into the space-time formulations.

From the studies using two numerical examples; a falling cylinder within a fluid domain and

the Turek-Hron FSI3 benchmark problem, the potential of the proposed combination for

FSI with large deformation was demonstrated. A multibody FSI-contact problem was also

computed. As the space-time XFEM can avoid temporal interpolation errors due to moving

interfaces, stable and robust computation for the FSI-contact problems was achieved.

Owing to the elegance of the fixed grid approach in a fluid domain and the space-time

formulation, the Lagrangian-immersed FSI method using the space-time XFEM is a promis-

ing method which has interesting capabilities for complex FSI-contact problems. The ability

to model large deformations and contact simultaneously within the FSI system presents

a significant process in simulating complex FSI problems. This method is not limited to

the fluid-structure interaction and also applicable to various types of complex multi-physics

problems including moving interfaces, such as the interaction between the Lagrangian and

Eulerian solids, the immiscible multiphase fluid problem, the interaction of a structure and
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electromagnetic fields, and acoustic-structure interaction. Based on the proposed method,

the realization of the flexible computation for complex multi-physics analysis is able to extend

greatly the range of the product design in the industrial world.

8.2 Future Works

The computational methods presented in this thesis are promising for complex geometries

and multi-physics systems, but these methods are still in the developing stage. This section

summarizes future prospects and open questions to be clarified for the space-time XFEM

and the Lagrangian-immersed FSI method.

(1) Extension to spatially three-dimensional problems

In this thesis, the space-time XFEM and the Lagrangian-immersed FSI method were

studied using spatially two-dimensional problems. To demonstrate the versatility of the

proposed methods, the extension of the proposed methods into spatially three-dimensional

problems should be the next step. As the elementwise temporal layer approach and the FSI

between non-matching space-time interfaces based on the node-to-surface method are directly

applicable to 3D, there are no fundamental hurdles for this extension. The challenging point

is the contact formulation. Currently, the surface-to-surface paring is used in the contact

formulation, following the work of Lawry and Maute [75]. The contact algorithm based on

the node-to-surface pairing is preferable for 3D analysis. Furthermore, the combination of

the proposed method and hierarchical mesh refinement would enhance both the accuracy

and computational efficiency for large-scale 3D problems.

(2) Modification of FSI between non-matching interfaces

FSI in the Lagrangian-immersed FSI method is computed by boundary integrals between

non-matching interfaces based on Nitsche’s method. In some cases, physical quantities of the
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Eulerian system (e.g. drag and lift force) have non-physical fluctuations in time even if when

the space-time XFEM is used. It is assumed that these fluctuations mainly originate from

FSI on non-matching interfaces. Enhancing the accuracy and stability of the FSI boundary

integrals is recommended. Studies could include: the parameter study of the penalty coeffi-

cients for Nitsche’s method, and the change of the coupling method from Nitsche’s method

to other methods, such as the Lagrange multiplier method.

(3) Optimization based on Lagrangian-immersed FSI method

This thesis presented only forward analysis. As an application, topology optimization of

steady-state and transient FSI problems including large deformation and contact could be

computed by the Lagrangian-immersed FSI method. As Lagrangian and Eulerian systems

are completely disconnected in the Lagrangian-immersed FSI method, this feature simplifies

the adjoint sensitivity analysis for the gradient-based design optimization.

(4) Application to various multi-physics problems

The proposed combination of the space-time XFEM and the Lagrangian-immersed FSI

method is not limited to fluid-structure interaction, but it provides a computational frame-

work for complex multi-physics problems. Tire simulation on snow or soil could be computed

as the interaction between Lagrangian and Eulerian solids based on the proposed method.

The proposed method would be directly applicable to acoustic-structure interaction in the

presence of moving interfaces [117], and interaction between a structure and the electro-

magnetic field. The latter would allow studying the Meissner effect (superconductivity) and

applications to industrial products, such as Maglev systems [118].



www.manaraa.com

Bibliography

[1] G.D. Smith. Numerical Solution of Partial Differential Equations: Finite Difference
Methods. Oxford Applied Mathematics and. Clarendon Press, 1985.

[2] A. Iserles. A First Course in the Numerical Analysis of Differential Equations. Cam-
bridge Texts in Applied Mathematics. Cambridge University Press, 1996.

[3] J.D. Hoffman and S. Frankel. Numerical Methods for Engineers and Scientists, Second
Edition,. Taylor & Francis, 2001.

[4] P. Majumdar. Computational Methods for Heat and Mass Transfer. Series in Compu-
tational and Physical Processes in Mechanics and Thermal Sciences. Taylor & Francis,
2005.

[5] C. Grossmann, H.G. Roos, and M. Stynes. Numerical Treatment of Partial Differential
Equations. Universitext. Springer Berlin Heidelberg, 2007.

[6] Y. Jaluria. Computational Heat Transfer. CRC Press, 2017.

[7] A. Hrennikoff. Solution of problems of elasticity by the framework method. Journal of
Applied Mechanics, 8(4):0–0, 1941.

[8] R. Courant. Variational Methods for the Solution of Problems of Equilibrium and
Vibrations. [s.n.] @, 1943.

[9] E. Hinton and B. Irons. Least squares smoothing of experimental data using finite
elements. Strain, 4(1):24–27, 1968.

[10] G. Strang and G. Fix. An Analysis of the Finite Element Method. Wellesley-Cambridge
Press, 2008.

[11] O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu. The Finite Element Method: Its Basis
and Fundamentals, Sixth Edition. Butterworth-Heinemann, 6 edition, May 2005.

[12] K.J. Bathe. Finite Element Procedures. Prentice Hall, 2006.

[13] G. Allaire. Numerical Analysis and Optimization: An Introduction to Mathematical
Modelling and Numerical Simulation. Numerical Mathematics and Scientific Compu-
tation. Oxford University Press, 2007.

[14] T.J.R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite
Element Analysis. Dover Publications, 2000.

[15] N.H. Kim. Introduction to Nonlinear Finite Element Analysis. SpringerLink : Bücher.
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[112] S. Turek, J. Hron, M. Mádĺık, M. Razzaq, H. Wobker, and J.F. Acker. Numerical
simulation and benchmarking of a monolithic multigrid solver for fluid-structure inter-
action problems with application to hemodynamics. In H.J. Bungartz, M. Mehl, and
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Appendix A

Material Constitutive Laws

This appendix summarizes the theory and the numerical implementation of the material

constitutive laws related to this thesis.

A.1 Isotropic Linear Elastic Material Constitutive Law

The most basic constitutive law is the isotropic linear elastic material constitutive law

based on the infinitesimal small strain theory. The general form of the linear elastic material

is as follows:

σij = Dijklεkl , (A.1)

εkl =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (A.2)

where εkl and σij are the infinitesimal small strain tensor and the Cauchy stress tensor,

respectively. Dijkl is the constitutive tensor. By applying the assumption of the isotropic

material, the following symmetries are required based on the symmetry of the stress tensor

σij and the strain tensor εkl:

Dijkl = Djikl = Dijlk = Dklij . (A.3)

Using the engineering strain ε, the following representation is mainly used for the isotropic

linear elastic material constitutive law (assuming two-dimensional case):
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σ =


σxx

σyy

σxy

 =


D11 D12 0

D12 D22 0

0 0 D33



εxx

εyy

2εxy

 = Dε . (A.4)

The tangential operators for the isotropic linear elastic material with respect to the nodal

displacement u is as follows:

∂σ

∂u
= D

∂ε

∂u
. (A.5)

A.2 Hyperelastic Material Constitutive Law

Section A.1 is limited to the case of the infinitesimal small strain. The assumption of

the infinitesimal small strain is valid when the rigidity of the structure is high enough and

the applicable deformation is relatively small. In general, the structures made by metals fit

into this assumption. On the other hand, the structures affected by the large deformation,

especially in the case that the elastic modulus is relatively small, its assumption breaks down.

It is essential to treat finite strains and consider the geometric nonlinearity of the material.

The most common example of this kind of material is the rubber.

While there are several nonlinear constitutive laws, the most popular type is the hyper-

elastic material constitutive law. The hyperelastic material is defined by the hyperelastic

function (strain energy density function) W . The discussion of this section based on Kyoya

[119] and Kim [120]. In addition, the following notations are used in this section.
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Table A.1: Notation for material constitutive law
Notation Property

W hyperelastic function
F = FiJ deformation gradient tensor
C = CIJ right Cauchy-Green tensor
B = Bij left Cauchy-Green tensor
E = EIJ Green-Lagrange strain tensor
e = eiJ Euler-Almansi strain tensor
P = PiJ first Piola-Kirchhoff stress tensor
S = IJ second Piola-Kirchhoff stress tensor
σ = σij Cauchy stress tensor

A.2.1 Objectivity of Hyperelastic Material Constitutive Law

An important characteristic of the hyperelastic material constitutive law is the objectivity.

The objectivity means that the hyperelastic function (strain energy density function)W does

not have the influence of the rigid-body rotation. This is because that W should have the

unique value for all observers.

Assuming the deformation gradient tensor F is given at a material point X, the hyper-

elastic function can be interpreted by the function of F :

W = W
(
F (X)

)
, (A.6)

Based on (A.6), the first Piola-Kirchhoff (first PK) stress tensor P , which is the conjugate

stress tensor of the deformation gradient F , is computed by differencing W with respect to

F :

PiJ =
∂W

∂FiJ

. (A.7)

However, the deformation gradient F has the influence of the rigid-body rotation R. F is

decomposed by the appropriate rotation tensor R and the stretch tensor U (or V ) by the
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polar decomposition:

F = RU = V R . (A.8)

Satisfying the objectivity, W should be a function of the stretch part U (or V ):

W =W (F ) = W (RU) = W (U) . (A.9)

The left Cauchy-Green tensor C and the Green-Lagrange strain tensor E also have the

rotational invariance because C and E are defined only by the stretch part of F :

C = FTF = (RU)TRU = UTRTRU = UTIU = UTU (∵ RT = R−1) , (A.10)

E =
1

2
(C − I) = 1

2
(UTU − I) . (A.11)

Therefore, the second Piola-Kirchhoff (second PK) stress tensor S is directly computed by

differencing W with respect to its conjugate strain tensor E, by satisfying the objectivity of

the constitutive law:

SIJ =
∂W

∂EIJ

. (A.12)

The first PK stress P and the Cauchy stress σ are computed from S as follows:

P = FS , (A.13)

σ = J−1FSFT , (A.14)

where J = detF . Based on the total Lagrangian formulation, P is the appropriate stress

measure. Based on the updated Lagrangian formulation, σ is the appropriate stress measure.
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A.2.2 Tangential Operator of Stress Tensor

For the computation of the momentum equation, tangential operators of the stress with

respect to the nodal displacement u are essential. Followings are the tangential operators of

P and σ for the total and updated Lagrangian formulation respectively:

∂P

∂u
=
∂F

∂u
S + F

∂S

∂u
, (A.15)

∂σ

∂u
= J−1∂F

∂u
SFT + J−1F

∂S

∂u
FT + J−1FS

∂F

∂u

T

− J−2 ∂J

∂u
FSFT . (A.16)

In the following section, ∂S
∂u

is only denoted. (A.15) and (A.16) are used for the computation

of the tangential operators. In addition, following derivatives of C and C−1 are beneficial

for the above tangential operators:

∂C

∂u
=
∂F

∂u

T

F + FT∂F

∂u
, (A.17)

∂C−1

∂u
= −C−1∂C

∂u
C−1 . (A.18)

A.2.3 Hyperelastic Constitutive Law based on F , C and E

This section summarizes the representative hyperelastic constitutive laws defined by C

and E directly.

A.2.3.1 Compressible St. Venant-Kirchhoff Material

The St. Venant-Kirchhoff material is a geometrically-nonlinear materially-linear hypere-

lastic material constitutive law. W and S are defined as follows:

W =
1

2
λ
(
Tr(E)

)2
+ µTr(E2) , (A.19)

SIJ =
∂W

∂EIJ

= λTr(E)δIJ + 2µEIJ , (A.20)
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where λ and µ are the Lamé’s constants defined as follows:

λ =
νs

(1 + νs)(1− 2νs)
Es , (A.21)

µ =
1

2(1 + νs)
Es , (A.22)

where Es is the Young’s modulus and νs is the Poisson’s ratio. The tangential operator of

S with respect to the nodal displacement u is as follows:

∂SIJ

∂u
= (λδIJ + 2µ)

∂EIJ

∂u
=

1

2
(λδIJ + 2µ)

∂CIJ

∂u
. (A.23)

A.2.3.2 Compressible Neo-Hookean Material (Belytchko’s Form)

Belytschko et al. [107] proposed a geometrically and materially nonlinear material con-

stitutive law using C directly. J = detF also has the objectivity. This constitutive law is

widely used in this thesis for FSI and contact. W and S are defined as follows:

W =
1

2
λ
(
ln(detF )

)2
+

1

2
µ
(
Tr(C)− 3

)
− µ ln(detF )

=
1

2
λ
(
ln J

)2
+

1

2
µ
(
Tr(C)− 3

)
− µ ln J , (A.24)

SIJ =2
∂W

∂CIJ

= (λ ln J − µ)C−1
IJ + µδIJ . (A.25)

where λ and µ are the Lamé’s constants. The tangential operator of S with respect to nodal

displacement u is as follows:

∂SIJ

∂u
=
λ

J

∂J

∂u
C−1

IJ + (λ ln J − µ)∂C
−1
IJ

∂u
. (A.26)

A.2.4 Hyperelastic Constitutive Law based on Reduced Invariants of C

Widely-used hyperelastic constitutive laws are defined by the invariants of the right

Cauchy-Green tensor C. This section first summarizes the hyperelastic constitutive laws

based on the standard invariants of the Cauchy-Green tensor. The second Piola-Kirchhoff
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(second PK) stress tensor SIJ (A.12) is modified as follows:

SIJ =
∂W

∂EIJ

= 2
∂W

∂CIJ

. (A.27)

From here, the hyperelastic functions defined by standard invariants of the right Cauchy-

Green tensor C are assumed and then, (A.13) is modified as follows:

SIJ = 2
∂W

∂CIJ

= 2
∂IC1

∂CIJ

∂W

∂IC1

+ 2
∂IC2

∂CIJ

∂W

∂IC2

+ 2
∂IC3

∂CIJ

∂W

∂IC3

, (A.28)

where IC1, IC2 and IC3 are the standard invariants of C, and IC3 = J2:

IC1 = TrC , (A.29)

IC2 =
1

2

[
(TrC)2 − TrC2

]
=

1

2
(I2C1 − TrC2) , (A.30)

IC3 = detC = (detF )2 = J2 . (A.31)

Derivatives of the standard invariants with respect to C are denoted as follows:

∂IC1

∂CIJ

=
∂(TrC)

∂CIJ

=
∂CKK

∂CIJ

= δIJ , (A.32)

∂IC2

∂CIJ

= IC1
∂IC1

∂CIJ

− 1

2

∂(TrC2)

∂CIJ

= IC1δIJ −
1

2

∂(CKLCLK)

∂CIJ

= IC1δIJ −
1

2

∂(CKLCKL)

∂CIJ

= IC1δIJ − δKIδLJCKL = IC1δIJ − CIJ , (A.33)

∂IC3

∂CIJ

=
∂(detC)

∂CIJ

= detC(C−T)IJ = detC(C−1)IJ . (A.34)

(A.34) is derived from the Gâteaux derivative (directional derivative) and the detail is sum-

marized in Appendix A.3. Therefore, the second PK stress tensor S is computed as follows

(Ĩ denotes an identity matrix):

• Second PK Stress (Index Notation)

SIJ = 2
∂W

∂IC1

δIJ + 2
∂W

∂IC2

(IC1δIJ − CIJ) + 2J2 ∂W

∂IC3

(C−1)IJ , (A.35)



www.manaraa.com

283

• Second PK Stress (Matrix Notation)

S = 2
∂W

∂IC1

Ĩ + 2
∂W

∂IC2

(IC1Ĩ − C) + 2J2 ∂W

∂IC3

C−1 . (A.36)

Many popular hyperelastic material constitutive laws are defined by reduced invariants

ICi(i = 1 ∼ 3) of C. For example, the Mooney-Rivlin (MR) material should be defined by the

reduced invariants ICi, not by the standard invariants ICi. If a MR material is defined by the

standard invariants, stresses are evaluated as non-zero values when there is no deformation

(zero strain state). To escape from this problem, the definition by reduced invariants is an

efficient way. In the following discussion, the hyperelastic material constitutive law is defined

by the reduced invariants of C is discussed. First, the reduced invariants ICi are defined by

the standard invariants ICi as follows:

IC1 ≡ I−2/3
C3 IC1 = I

−1/3
C3 IC1 , (A.37)

IC2 ≡ I−4/3
C3 IC2 = I

−2/3
C3 IC2 , (A.38)

IC3 ≡ I
1/2
C3 = (detC)1/2 = detF = J . (A.39)

Derivatives of the above reduced invariants with respect to C are computed as follows, using

(A.31) - (A.34):

∂IC1

∂CIJ

= I
−1/3
C3

∂IC1

∂CIJ

− 1

3
I
−4/3
C3 IC1

∂IC3

∂CIJ

(A.40)

= I
−1/3
C3 δIJ −

1

3
I
−4/3
C3 IC1IC3(C

−1)IJ (A.41)

= I
−1/3
C3

(
δIJ −

1

3
IC1(C

−1)IJ

)
, (A.42)

∂IC2

∂CIJ

= I
−2/3
C3

∂IC2

∂CIJ

− 2

3
I
−5/3
C3 IC2

∂IC3

∂CIJ

(A.43)

= I
−2/3
C3 (IC1δIJ − CIJ)−

2

3
I
−5/3
C3 IC2IC3(C

−1)IJ (A.44)

= I
−2/3
C3

(
IC1δIJ − CIJ −

2

3
IC2(C

−1)IJ

)
, (A.45)
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∂IC3

∂CIJ

=
1

2
I
−1/2
C3

∂IC3

∂CIJ

=
1

2
I
1/2
C3 (C

−1)IJ . (A.46)

The second PK stress defined by the reduced invariants is as follows:

SIJ = 2
∂W

∂CIJ

= 2
∂IC1

∂CIJ

∂W

∂IC1

+ 2
∂IC2

∂CIJ

∂W

∂IC2

+ 2
∂IC3

∂CIJ

∂W

∂IC3

. (A.47)

By substituting (A.42) - (A.46), the second PK stress tensor S is computed as follows using

IC3 = J2. These equations are corresponding to (A.35) and (A.36):

• Second PK Stress (Index Notation)

SIJ =2
∂W

∂IC1

(
J−2/3δIJ −

1

3
IC1(C

−1)IJ

)
+ 2

∂W

∂IC2

(
J−2/3IC1δIJ − J−4/3CIJ −

2

3
IC2(C

−1)IJ

)
+

∂W

∂IC3

J(C−1)IJ , (A.48)

• Second PK Stress (Matrix Notation)

S =2
∂W

∂IC1

(J−2/3Ĩ − 1

3
IC1C

−1)

+ 2
∂W

∂IC2

(
J−2/3IC1Ĩ − J−4/3C − 2

3
IC2C

−1

)
+

∂W

∂IC3

JC−1 . (A.49)

A.2.4.1 Compressible Material

This section denotes some popular hyperelastic material constitutive laws based on re-

duced invariants for the compressible material. The general form of the hyperelastic function

is defined as follows:

W (IC1, IC2, J) =
∞∑

m+n+p=1

Cmnp(IC1 − 3)m(IC2 − 3)n(J − 1)p , (A.50)

where Cmnp is a coefficient of each term.
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• Compressible Mooney-Rivlin Material

The hyperelastic function W of the Mooney-Rivlin model and its derivatives with respect to

reduced invariants as follows:

W (IC1, IC2, J) = c10(IC1 − 3) + c01(IC2 − 3) +D1(J − 1)2 , (A.51)

∂W

∂IC1

=
∂W

∂IB1

= c10 , (A.52)

∂W

∂IC2

=
∂W

∂IB2

= c01 , (A.53)

∂W

∂IC3

=
∂W

∂IB3

= 2D1(J − 1) . (A.54)

The second PK stress tensor and its tangential operator are defined as follows based on

matrix forms:

S =− 2J−4/3c10C + 2J−2/3(c10 + IC1c01)Ĩ

+

[
−2

3
(IC1c10 + IC2c01) + 2D1(J − 1)J

]
C−1 , (A.55)

∂S

∂u
=
4

3
J−4/3

[
2c10Ĩ − (c10 + 2IC1c01)C

−1

]
∂C

∂u

−
[
4

9
(2IC1c10 + 5IC2c01) +D1J

]
∂C−1

∂u
. (A.56)

A.2.4.2 Incompressible Material

Considering the incompressible solid material (ν = 0.5), the third invariant I3 is always

1 (I3 = J2 = 1). Therefore, the standard invariants and the reduced invariants are exactly

identical in this case:

IC1 = I
−1/3
C3 IC1 = IC1 , (A.57)

IC2 = I
−2/3
C3 IC2 = IC2 , (A.58)

IC3 = I
1/2
C3 = J = 1 . (A.59)
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The hyperelastic function W is defined by the standard invariants in this discussion. In

addition, the hydrostatic pressure p should be introduced as a volume and non-deterministic

contribution from the deformation. Therefore, the hyperelastic function for the incompress-

ible material is denoted as follows:

W (IC1, IC2) =
∞∑

m+n=1

(
Cmn(IC1 − 3)m(I − 3)n

)
− p(J − 1) . (A.60)

As denoted at the above equation, the hydrostatic pressure p is a Lagrange multiplier for

the incompressibility J = 1 mathematically.

• Incompressible Mooney-Rivlin Material

The hyperelastic function W of the incompressible Mooney-Rivlin model and its derivatives

with respect to the standard invariants are as follows:

W (IC1, IC2) = c10(IC1 − 3) + c01(IC2 − 3)− p(J − 1) (A.61)

∂W

∂IC1

=
∂W

∂IB1

= c10 (A.62)

∂W

∂IC2

=
∂W

∂IB2

= c01 (A.63)

∂W

∂J
= −p (A.64)

The second PK stress tensor and its tangential operator are defined as follows based on

matrix forms:

S =− pC−1 + Sdev (A.65)

Sdev =− 2c01C + 2(c10 + IC1c01)Ĩ −
2

3
(IC1c10 + 2IC2c01)C

−1 (A.66)

∂Sdev

∂u
=

[
−2

3
(c10 + 2IC1c01)C

−1 +
4

3
c01Ĩ

]
∂C

∂u
− 2

3
(IC1c10 + 2IC2c01)

∂C−1

∂u
(A.67)

where Sdev represents the deviatoric part of S.
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• Incompressible Yeoh Material

W (IC1) = C10(IC1 − 3) + C20(IC1 − 3)2 + C30(IC1 − 3)3 + p(J − 1) (A.68)

∂W

∂IC1

=
∂W

∂IB1

= C10 + 2C20(IC1 − 3) + 3C30(IC1 − 3)2 (A.69)

∂W

∂J
= p (A.70)

• Incompressible Ogden Material

W (λ1, λ2, λ3) =
N∑
i=1

µi

αi

(
λαi
1 + λαi

2 + λαi
3 − 3

)
+ p(J − 1) (A.71)

A.3 Derivative of Determinant

Considering the derivative of the determinant of a tensor C with respect to C, this

derivative is derived from the Gâteaux derivative (directional derivative) of the following

scalar triplet product. Assuming arbitrary vectors a1,a2 and a3, then:

F (C) ≡ (Ca1)
T(Ca2 × Ca3) ≡ |Ca1, Ca2, Ca3| = detC|a1,a2,a3| . (A.72)

The Gâteaux derivative of (A.72) is defined as follows:

DF (C)[∆C] =
dF (C + h∆C)

dh

∣∣∣∣
h=0

(A.73)

=
d

dh
|(C + h∆C)a1, (C + h∆C)a2, (C + h∆C)a3|

∣∣∣∣
h=0

(A.74)

= |∆Ca1, Ca2, Ca3|+ |Ca1,∆Ca2, Ca3|+ |Ca1, Ca2,∆Ca3| (A.75)

= |(∆C)C−1Ca1, Ca2, Ca3|+ |Ca1, (∆C)C
−1Ca2, Ca3|

+ |Ca1, Ca2, (∆C)C
−1Ca3| (A.76)

= Tr(∆CC−1)|Ca1, Ca2, Ca3| (A.77)

= Tr(∆CC−1)detC|a1,a2,a3| (A.78)
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= (detC)C−T : ∆C|a1,a2,a3| . (A.79)

On the other hand, this Gâteaux derivative can be solved by the different way as follows:

DF (C)[∆C] =
dF (C + h∆C)

dh

∣∣∣∣
h=0

(A.80)

=
d
(
det(C + h∆C)

)
dh

∣∣∣∣
h=0

|a1,a2,a3| (A.81)

=
∂(detC)

∂Cij

(∆C)ij|a1,a2,a3| (A.82)

=
∂(detC)

∂Cij

êiê
T
j : (∆C)klêkê

T
l |a1,a2,a3| (A.83)

=
∂(detC)

∂C
: ∆C|a1,a2,a3| . (A.84)

Therefore, the derivative of the determinant of C is defined as follows based on the compar-

ison of (A.79) and (A.84):

∂(detC)

∂C
= (detC)C−T = (detF )2C−1 = J2C−1 (∵ CT = C) . (A.85)

2
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Appendix B

Nitsche’s Method for Cauchy Momentum Equation

In this appendix, Nitsche’s formulation for the Cauchy momentum equation is summa-

rized by referencing [121, 72]. This appendix assumes the infinitesimal small strain in the

solid phase for simplicity.

B.1 Cauchy Momentum Equation

The following Cauchy momentum equation is derived from the conservation of the mo-

mentum:

ρ
Dvi
Dt

=
∂σij
∂xj

+ bi , (B.1)

where vi is the velocity, bi is the body force, ρ is the density, and σij is the Cauchy stress

tensor. The generalized constitutive equation is defined by the fourth order constitutive

tensor Dijkl and the generalized strain tensor eij:

σij = σij(a) = Dijklekl(a) , (B.2)

where eij is defined as follows:

eij(a) = eji(a) =
1

2

(
∂ai
∂xj

+
∂aj
∂xi

)
. . (B.3)

In (B.3), ai are the characteristic physical quantities. In the solid analysis, eij is the strain

tensor and ai is the solid displacement ui. In the fluid analysis, eij is the strain rate tensor

and ai is the fluid velocity vi.
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B.2 Constitutive Tensor

The constitutive Dijkl has the following symmetries to meet the request of the symmetry

of the Cauchy stress tensor σij, the strain tensor eij and the definition of the strain energy

function W :

Dijkl = Djikl = Dijlk = Dklij . (B.4)

Followings are the basic constitutive laws of the solid and the fluid.

• Isotropic Linear Elastic Solid Material

ai = ui , (B.5)

Dijkl = λsδijδkl + 2µsδikδjl , (B.6)

bi = ρgi , (B.7)

where λs and µs are the Lamé’s constants of the solid material. gi is the body force constant.

• Compressible Newtonian Fluid

ai = vi , (B.8)

Dijkl = −
2

3
µfδijδkl + 2µfδikδjl , (B.9)

bi = ρgi −
∂p

∂xi
, (B.10)

where µf is the dynamic viscosity and p is the pressure of the fluid. Note that the Stokes

assumption is applied to (B.9). Using these definition, the Cauchy momentum equation

(B.1) is identical to the Navier-Stokes (NS) equation.
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• Incompressible Newtonian Fluid

ai = vi , (B.11)

Dijkl = 2µfδikδjl , (B.12)

bi = ρgi −
∂p

∂xi
. (B.13)

Using these definition, the Cauchy momentum equation (B.1) is identical to the incompress-

ible Navier-Stokes (INS) equation.

B.3 Weak Form of Cauchy Momentum Equation

In this section, the weak form of the Cauchy momentum equation is considered. First,

the Cauchy momentum equation is divided as follows:

−∂σij(a)
∂xj

= −ρDvi
Dt

+ bi ≡ fi , (B.14)

σij(a) = Dijklekl(a) =
1

2
Dijkl

(
∂ak
∂xl

+
∂al
∂xk

)
. (B.15)

The weak form of (B.14) is modified as follows:∫
κ

dΩ w

(
−∂σij(a)

∂xj
− fi

)
=

∫
κ

dΩ
∂w

∂xj
σij(a)−

∫
∂κ

dΓ wσji(a)n̂j −
∫
κ

dΩ wfi = 0, (B.16)

∴
∫
κ

dΩ
∂w

∂xj
σij(a) =

∫
κ

dΩ wfi +

∫
∂κ

dΓ wσji(a)n̂j , (B.17)

where w is an admissible test function. Similarly, the weak form of (B.15) is as follows, using

other test functions qj: ∫
κ

dΩ qjσij(a) =

∫
κ

dΩ qjDijklekl(a) . (B.18)
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The summary of these weak forms are:∫
κ

dΩ
∂w

∂xj
σij(a) =

∫
κ

dΩ wfi +

∫
∂κ

dΓ wσji(a)n̂j , (B.19)∫
κ

dΩ qjσij(a) =

∫
κ

dΩ qjDijklekl(a) . (B.20)

Based on the standard Galerkin method, w = δvi and qj =
∂w
∂xj

= ∂δvi
∂xj

, then:∫
κ

dΩ
∂δvi
∂xj

σij(a) =

∫
κ

dΩ δvifi +

∫
∂κ

dΓ δviσji(a)n̂j , (B.21)∫
κ

dΩ
∂δvi
∂xj

σij(a) =

∫
κ

dΩ
∂δvi
∂xj

Dijklekl(a) =

∫
κ

dΩ eij(δv)Dijklekl(a)

=

∫
κ

dΩ eij(δv)Dklijekl(a) =

∫
κ

dΩ σij(δv)eij(a)

=− 1

2

∫
κ

dΩ
∂σij(δv)

∂xj
ai +

1

2

∫
∂κ

dΓ σij(δv)n̂jai

− 1

2

∫
κ

dΩ
∂σij(δv)

∂xi
aj +

1

2

∫
∂κ

dΓ σij(δv)n̂iaj . (B.22)

B.4 Weak Form for Nitsche’s Method

The main idea of Nitsche’s method is to introduce the numerical flux into the boundary

integrals of (B.19) and (B.20):∫
κ

dΩ
∂δvmi
∂xj

σm
ij (a

m) =

∫
κ

dΩ δvmi f
m
i +

∫
∂κ

dΓ δvmi σ̃
m
ji (a

m)n̂m
j , (B.23)∫

κ

dΩ
∂δvmi
∂xj

σm
ij (a

m) =− 1

2

∫
κ

dΩ
∂σm

ij (δv
m)

∂xj
ami +

1

2

∫
∂κ

dΓ σm
ij (δv

m)n̂m
j a

m
i

− 1

2

∫
κ

dΩ
∂σm

ij (δv
m)

∂xi
amj +

1

2

∫
∂κ

dΓ σm
ij (δv

m)n̂m
i a

m
j . (B.24)

σ̃m
ij and ũmk are the approximated values at the boundary integrals. The upper subscript m

represents the phase (m = 1, 2). The first and third terms of the RHS of (B.24) can be

rewritten as follows using (B.22):

− 1

2

∫
κ

dΩ
∂σm

ij (δv
m)

∂xj
ami −

1

2

∫
κ

dΩ
∂σm

ij (δv
m)

∂xi
amj
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=

∫
κ

dΩ
∂δvmi
∂xj

σm
ij (a

m)− 1

2

∫
∂κ

dΓ σm
ij (δv

m)n̂m
j a

m
i −

1

2

∫
∂κ

dΓ σm
ij (δv

m)n̂m
i a

m
j (B.25)

=

∫
κ

dΩ emij (δv
m)σm

ij (a
m)− 1

2

∫
∂κ

dΓ σm
ij (δv

m)n̂m
j a

m
i −

1

2

∫
∂κ

dΓ σm
ij (δv

m)n̂m
i a

m
j (B.26)

=

∫
κ

dΩ σm
ij (δv

m)emij (a
m)− 1

2

∫
∂κ

dΓ σm
ij (δv

m)n̂m
j a

m
i −

1

2

∫
∂κ

dΓ σm
ij (δv

m)n̂m
i a

m
j , (B.27)

(B.27) do not include the numerical flux. Substituting (B.27) to (B.24), then the weak form

is summarized as follows:∫
κ

dΩ
∂δvmi
∂xj

σm
ij (a

m) =

∫
κ

dΩ σm
ij (δv

m)emij (a
m)−

∫
∂κ

dΓ σm
ij (δv

m)n̂m
j (a

m
i − ãmi ) (B.28)

=

∫
κ

dΩ δvmi f
m
i +

∫
∂κ

dΓ δvmi σ̃
m
ji (a

m)n̂m
j , (B.29)

∴
∫
κ

dΩ σm
ij (δv

m)emij (a
m)−

∫
κ

dΩ δvmi f
m
i

−
∫
∂κ

dΓ σm
ij (δv

m)n̂m
j (a

m
i − ãmi )−

∫
∂κ

dΓ δvmi σ̃
m
ji (a

m)n̂m
j = 0 . (B.30)

B.5 Symmetric Nitsche Formulation

This section focuses on the symmetric Nitsche formulation. Based on the symmetric

Nitsche formulation, the numerical fluxes; ũmi and σ̃m
ij , are defined as follows. ΓD and ΓI

mean the Dirichlet boundary and the interface between two phases, respectively:

On Dirichlet Boundary (ΓD)

ã1i = ã2i = āi on ΓD , (B.31)

σ̃1
ij = σ1

ij, σ̃
2
ij = σ2

ij on ΓD , (B.32)

On Interface between Two Phases (ΓI)

ã1i = ã2i =
1

2
(a1i + a2i ) ≡ {ai} on ΓI , (B.33)
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σ̃1
ij = σ̃2

ij =
1

2
(σ1

ij + σ2
ij)− α(v1i − v2i )n̂1

j ≡ {σij} − α[[vi]]n̂1
j on ΓI . (B.34)

By introducing these definition of the numerical flux (B.31) - (B.34) into (B.30), the weak

form for one element is denoted as follows:∫
κ

dΩ σm
ij (δv

m)emij (a
m)−

∫
κ

dΩ δvmi f
m
i

−
∫
∂κ⊂ΓD

dΓ σm
ij (δv

m)n̂m
j (a

m
i − āmi )−

∫
∂κ⊂ΓD

dΓ δvmi σ̄
m
ji (a

m)n̂m
j

−
∫
∂κ⊂ΓI

dΓ σm
ij (δv

m)n̂m
j (a

m
i − {ai})−

∫
∂κ⊂ΓI

dΓ δvmi {σji}n̂m
j

+ α

∫
∂κ⊂ΓI

dΓ δvmi [[vi]](n̂
1
j n̂

m
j ) = 0 . (B.35)

By integrating over all elements, (B.35) is summarized as follows.∫
Ωm

dΩ σm
ij (δv

m)emij (a
m)−

∫
Ωm

dΩ δvmi f
m
i

−
∫
Γm
D

dΓ σm
ij (δv

m)n̂m
j (a

m
i − āmi )−

∫
Γm
D

dΓ δvmi σ̄
m
ji (a

m)n̂m
j

−
∫
ΓI

dΓ σm
ij (δv

m)n̂m
j (a

m
i − {ai})−

∫
ΓI

dΓ δvmi {σji}n̂m
j

+ α

∫
ΓI

dΓ δvmi [[vi]](n̂
1
j n̂

m
j ) = 0 , (B.36)

where Ωm represents the volume of the phase m and Γm
D is the Dirichlet boundary of the

phase m. The boundary integrals of (B.36) at the interface for each phase (m = 1, 2) are

simplified as follows:

Boundary Integral on Interface for Phase 1

−
∫
ΓI

dΓ σ1
ij(δv

1)n̂1
j(a

1
i − {ai})−

∫
ΓI

dΓ δv1i {σji}n̂1
j + α

∫
ΓI

dΓ δv1i [[vi]](n̂
1
j n̂

1
j) (B.37)

=− 1

2

∫
ΓI

dΓ σ1
ij(δv

1)n̂1
j [[ai]]−

∫
ΓI

dΓ δv1i {σji}n̂1
j + α

∫
ΓI

dΓ δv1i [[vi]] , (B.38)

where n̂1
j n̂

1
j = n̂1Tn̂1 = 1 is used.
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Boundary Integral on Interface for Phase 2

−
∫
ΓI

dΓ σ2
ij(δv

2)n̂2
j(a

2
i − {ai})−

∫
ΓI

dΓ δv2i {σji}n̂2
j + α

∫
ΓI

dΓ δv2i [[vi]](n̂
2
j n̂

1
j) (B.39)

=

∫
ΓI

dΓ σ2
ij(δv

2)n̂1
j

1

2
(a2i − a1i ) +

∫
ΓI

dΓ δv2i {σji}n̂1
j − α

∫
ΓI

dΓ δv2i [[vi]](n̂
1
j n̂

1
j) (B.40)

=− 1

2

∫
ΓI

dΓ σ2
ij(δv

2)n̂1
j [[ai]] +

∫
ΓI

dΓ δv2i {σji}n̂1
j − α

∫
ΓI

dΓ δv2i [[vi]] , (B.41)

where n̂2
j = −n̂1

j is used at the interface.

B.5.1 Symmetric Nitsche Method for Pure Structural or Pure Fluid Analysis

This section considers the pure solid analysis or the pure fluid analysis, which does not

include fluid-structure interaction (FSI). Using (B.36), (B.38) and (B.41), the weak form for

the whole system is summarized as follows:

2∑
m=1

∫
Ωm

dΩ σm
ij (δv

m)emij (a
m)−

2∑
m=1

∫
Ωm

dΩ δvmi f
m
i

−
2∑

m=1

∫
Γm
D

dΓ σm
ij (δv

m)n̂m
j (a

m
i − āmi )−

2∑
m=1

∫
Γm
D

dΓ δvmi σ̄
m
ji (a

m)n̂m
j

−
∫
ΓI

dΓ {δσij}n̂1
j [[ai]]−

∫
ΓI

dΓ [[δvi]]{σji}n̂1
j + α

∫
ΓI

dΓ [[δvi]] [[vi]] = 0 , (B.42)

where ai is the displacement ui in the solid phase or the velocity vi in the fluid phase. {δσij}

means the averaged stress. The strategy for the averaged stress is described in Section 5.5.2.

B.5.2 Symmetric Nitsche Method for FSI Analysis

This section considers the weak form of the symmetric Nitsche formulation for the FSI

analysis. Assuming the phase f as the fluid phase and the phase s as the solid phase,

respectively, Then, the weak form is denoted as follows:

∑
m=f,s

∫
Ωm

dΩ σm
ij (δv

m)emij (a
m)−

∑
m=f,s

∫
Ωm

dΩ δvmi f
m
i
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−
∑
m=f,s

∫
Γm
D

dΓ σm
ij (δv

m)n̂m
j (a

m
i − āmi )−

∑
m=f,s

∫
Γm
D

dΓ δvmi σ̄
m
ji (a

m)n̂m
j

− 1

2

∫
ΓI

dΓ σf
ij(δv

f )n̂f
j [[vi]]−

∫
ΓI

dΓ δvfi {σji}n̂
f
j − α

∫
ΓI

dΓ δvfi [[vi]]

− 1

2

∫
ΓI

dΓ σs
ij(δv

s)n̂f
j [[ui]] +

∫
ΓI

dΓ δvsi {σji}n̂
f
j + α

∫
ΓI

dΓ δvsi [[vi]] (B.43)

=
∑
m=f,s

∫
Ωm

dΩ σm
ij (δv

m)emij (a
m)−

∑
m=f,s

∫
Ωm

dΩ δvmi f
m
i

−
∑
m=f,s

∫
Γm
D

dΓ σm
ij (δv

m)n̂m
j (a

m
i − āmi )−

∑
m=f,s

∫
Γm
D

dΓ δvmi σ̄
m
ji (a

m)n̂m
j

− 1

2

∫
ΓI

dΓ σf
ij(δv

f )n̂f
j [[vi]]−

1

2

∫
ΓI

dΓ σs
ij(δv

s)n̂f
j [[ui]]

−
∫
ΓI

dΓ [[δvi]]{σji}n̂f
j + α

∫
ΓI

dΓ [[δvi]] [[vi]] = 0 , (B.44)

Following the works of Hansbo et al.[74], Jenkins et al.[102] and Mayer et al.[70], the traction

from the fluid side is used as the traction at the interface, which is the traditional FSI

approach that forces are transferred from the fluid phase to the solid phase rather than its

vice versa:

{σij} =
1

2

(
σf
ij(v

f ) + σs
ij(u

s)

)
→ σf

ij(v
f ) , (B.45)

1

2

∫
ΓI

dΓ σs
ij(δv

s)n̂f
j [[ui]]→

1

2

∫
ΓI

dΓ σf
ij(δv

f )n̂f
j [[vi]] . (B.46)

Substituting (B.45) and (B.46) to (B.44), the weak form for FSI is summarized as follows:

∑
m=f,s

∫
Ωm

dΩ σm
ij (δv

m)emij (a
m)−

∑
m=f,s

∫
Ωm

dΩ δvmi f
m
i

−
∑
m=f,s

∫
Γm
D

dΓ σm
ij (δv

m)n̂m
j (a

m
i − āmi )−

∑
m=f,s

∫
Γm
D

dΓ δvmi σ̄
m
ji (a

m)n̂m
j

−
∫
ΓI

dΓ σf
ij(δv

f )n̂f
j [[vi]]−

∫
ΓI

dΓ [[δvi]]σ
f
ji(v

f )n̂f
j + α

∫
ΓI

dΓ [[δvi]] [[vi]] = 0 . (B.47)
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If the normal vector from the solid phase to the fluid phase n̂s is used, then (B.47) is as

follows:

∑
m=f,s

∫
Ωm

dΩ σm
ij (δv

m)emij (a
m)−

∑
m=f,s

∫
Ωm

dΩ δvmi f
m
i

−
∑
m=f,s

∫
Γm
D

dΓ σm
ij (δv

m)n̂m
j (a

m
i − āmi )−

∑
m=f,s

∫
Γm
D

dΓ δvmi σ̄
m
ji (a

m)n̂m
j

+

∫
ΓI

dΓ σf
ij(δv

f )n̂s
j [[vi]] +

∫
ΓI

dΓ [[δvi]]σ
f
ji(v

f )n̂s
j + α

∫
ΓI

dΓ [[δvi]] [[vi]] = 0 . (B.48)
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Appendix C

Nitsche’s Method for Non-Matching Interfaces

This appendix summarizes the derivation of the FSI boundary integrals for the Lagrangian-

immersed FSI method denoted in Section 6.4. The Lagrangian-immersed FSI method per-

forms the FSI boundary integrals between the non-matching Eulerian and Lagrangian inter-

faces. Based on the master-slave concept, the Eulerian interface is the master interface and

the Lagrangian interface is the slave interface. The boundary contributions of the solid and

fluid momentum equations are enforced by Nitsche’s method. These boundary contributions

Rfsi
L and Rfsi

E originate from the boundary integrals of the momentum equations, and they

are defined on the different interfaces; the Lagrangian interface ΓL and the Eulerian interface

ΓE:

Rfsi
L = −

∫
ΓL0

dΓ δU s
i Π

s
iJ(U

s)ns
L0J = −

∫
ΓL

dΓ δU s
i σ

s
ij(U

s)ns
Lj , (C.1)

Rfsi
E = −

∫
ΓE

dΓ δvfi σ
f
ij(v

f , pf )nf
Ej , (C.2)

where Πs
iJ is the first Piola-Kirchhoff stress tensor of the solid phase, σs

ij is the Cauchy stress

tensor of the solid phase, and σf
ij is the Cauchy stress tensor of the fluid phase. ns

L0J and ns
Lj

represent the undeformed and deformed Lagrangian normals from the solid phase. nf
Ej is the

Eulerian normal from the fluid phase. (C.1) denotes both the total and update Lagrangian

formulations. In the following discussion, the updated Lagrangian formulation, i.e. the last

term of (C.1), is used. In (C.1) and (C.2), the compressible solid and the incompressible

Navier-Stokes fluid are assumed. The key operation of Nitsche’s method is to replace the

actual stress tensors; σs
iJ and σf

ij, with the stress tensors with artificial numerical fluxes; σ̃s
ij
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and σ̃f
ij. In addition, the numerical fluxes of the fluid velocity ṽfi is introduced to enforce

the continuity of the velocity on the interface. ṽfi is an approximation of vfi on an interface

(vfi − ṽ
f
i = 0), then:

Rfsi
L = −

∫
ΓL

dΓ δU s
i σ̃

s
ijn

s
Lj −

∫
ΓL

dΓ {δσij}ns
Lj(U

s
i − Ũ s

i ) , (C.3)

Rfsi
E = −

∫
ΓE

dΓ δvfi σ̃
f
ijn

f
Ej −

∫
ΓE

dΓ {δσij}nf
Ej(v

f
i − ṽ

f
i ) , (C.4)

where δσp
ij denotes a tangential stress operator of the Cauchy stress σp

ij for phase p = {s, f}.

The numerical flux of the solid displacement Ũ s
i will be removed later. In this section, [[·]]

denotes the jump operator and {·} denotes the weighted-average operator between the solid

and fluid phase:

[[a]] = as − af , (C.5)

{a} = κsas + κfaf (κs + κf = 1) . (C.6)

In this research, the shear modulus weighting (6.52) - (6.56) is used as a strategy for the

weighted-average operator {·}.

In addition, the master-slave concept is used in the Lagrangian-immersed FSI; see Section

6.2.3. The boundary integrals on the Lagrangian interface Rfsi
L are computed on the master

(Eulerian) interface ΓE. Therefore, (C.3) is modified as follows:

Rfsi
L = −

∫
ΓE

dΓ δU s
i σ̃

s
ijn

s
Lj −

∫
ΓE

dΓ {δσij}ns
Lj(U

s
i − Ũ s

i ) , (C.7)

Rfsi
E = −

∫
ΓE

dΓ δvfi σ̃
f
ijn

f
Ej −

∫
ΓE

dΓ {δσij}nf
Ej(v

f
i − ṽ

f
i ) . (C.8)

The symmetric Nitsche’s method for the standard interface, such as the mulitiphase

flow, the ALE-FSI method and the full-Eulerian FSI method, assumes the numerical fluxes
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as follows:

ṽfi =
1

2
(V s

i + vfi ) , (C.9)

Π̃s
iJ = {ΠiJ} − ηfsi[[vi]]ns

0J , (C.10)

σ̃f
ij = {σij} − ηfsi[[vi]]ns

j . (C.11)

where [[vi]] = V s
i − vfi and the normal of the solid phase is used above. The Lagrangian-

immersed FSI method uses the non-matching interfaces for fluid-structure interaction. As

the solid displacement U s
i and the solid velocity V s

i are defined only on ΓL, the projected

values of U s
i and V s

i are necessary from the viewpoint of integrals on the master interface

ΓE. Hence, the more precise descriptions of (C.9) - (C.11) for the Lagrangian-immersed FSI

analysis can be denoted as follows:

ṽfi =
1

2
(V̂ s

i

∣∣
ΓL

+ vfi ) on ΓE , (C.12)

σ̃s
ij = {σij} − ηfsi

(
V̂ s
i

∣∣
ΓL
− vfi

)
ns
Lj on ΓE , (C.13)

σ̃f
ij = {σij} − ηfsi

(
V̂ s
i

∣∣
ΓL
− vfi

)
ns
Ej on ΓE . (C.14)

where ·
∣∣
ΓL

denotes a projected value from ΓE onto ΓL. Substituting (C.12) - (C.14) into

(C.7) and (C.8), Rfsi
L and Rfsi

E are modified as follows:

Rfsi
L =−

∫
ΓE

dΓ δU s
i {σiJ}ns

Lj −
1

2

∫
ΓE

dΓ {δσij}ns
Lj(U

s
i − Ũ s

i )

+

∫
ΓE

dΓ δU s
i η

fsi(V̂ s
i

∣∣
ΓL
− vfi ) , (C.15)

Rfsi
E =

∫
ΓE

dΓ δvfi {σij}ns
Ej −

1

2

∫
ΓE

dΓ {δσij}ns
Ej(V̂

s
i

∣∣
ΓL
− vfi )

−
∫
ΓE

dΓ δvfi η
fsi(V̂ s

i

∣∣
ΓL
− vfi ) , (C.16)

where the following relationships are used: nf
Ei = −ns

Ei, n
sT
E ns

E = 1, and nsT
L ns

L = 1. The

first integrals of (C.15) and (C.16) are the standard consistency terms, the second integrals
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are the adjoint consistency terms and the third integrals are Nitsche’s penalty terms.

In this work, the adjoint consistency term of the solid side is replaced by the one of the

fluid side for simplicity:

−1

2

∫
ΓE

dΩ {δσij}ns
Lj(U

s
i − Ũ s

i )→ −
1

2

∫
ΓE

dΓ {δσij}ns
Ej(V̂

s
i

∣∣
ΓL
− vfi ) . (C.17)

This treatment is reasonable because the shear modulus weighting is used and thus, the fluid

stress is dominant at the weighted avarage of the stress {σij} (∵ κf >> κs). In addition, the

test function of the adjoint consistency term is replaced by the tangential operator of the

fluid stress by following the works of Hansbo et al. [74], Jenkins et al. [101, 102] and Mayer

et al. [70]. This approximation means that the traction from the fluid side is assumed as the

traction at the interface, which is the traditional FSI approach that forces are transferred

from the fluid phase to the solid phase rather than its vice versa:

−1

2

∫
ΓE

dΓ {δσij}ns
Ej(V̂

s
i

∣∣
ΓL
− vfi )→ −

1

2

∫
ΓE

dΓ σf
ij(δv

f , δpf )ns
Ej(V̂

s
i

∣∣
ΓL
− vfi ) . (C.18)

Thus, Rfsi
L and Rfsi

E for non-matching interfaces are simplified based on the master-slave

concept and the traditional approximation of averaged traction for the adjoint consistency

term:

Rfsi
L =−

∫
ΓE

dΓ δU s
i {σiJ}ns

Lj +

∫
ΓE

dΓ δU s
i η

fsi(V̂ s
i

∣∣
ΓL
− vfi ) , (C.19)

Rfsi
E =

∫
ΓE

dΓ δvfi {σij}ns
Ej −

∫
ΓE

dΓ σf
ij(δv

f , δpf )ns
Ej(V̂

s
i

∣∣
ΓL
− vfi )

−
∫
ΓE

dΓ δvfi η
fsi(V̂ s

i

∣∣
ΓL
− vfi ) . (C.20)

Assuming the case that both interfaces ΓL and ΓE are perfectly identical like ALE-FSI

method; i.e. ΓL = ΓE = Γfsi, the summation of Rfsi
L and Rfsi

E ((C.19) and (C.20)) results in
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the well-known Nitsche’s interface integral:

Rfsi =Rfsi
L +Rfsi

E

=−
∫
Γfsi

dΓ (δU s
i − δv

f
i ){σij}(vf , pf )ns

j −
∫
Γfsi

dΓ σf
ij(δv

f , δpf )ns
j [[vi]]

+

∫
Γfsi

dΓ (δU s
i − δv

f
i )η

fsi[[vi]] . (C.21)

It should be noted that the summation like (C.21) is not appropriate because Rfsi
L and Rfsi

E

have different physical dimensions; i.e. Rfsi
L is the work, and Rfsi

E is the power. The separate

forms like (C.19) and (C.20) are physically more precise.
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Appendix D

Contact Formulation based on Lagrangian Description

D.1 Outline

This chapter summarizes the theory of the contact formulation for the XFEM based on

Lawry and Maute [75]. The method proposed by Lawry and Maute [75] succeeded i to

compute contact using the XFEM based on the Lagrangian description. In this method, the

frictionless contact model is assumed. There are mainly four steps to deal with contact in

this method. The outline is shown in Figure D.1. In this figure and following description,

upper subscripts m and s represents properties of the master and slave objects. Table D.1

summarizes the notation related to the contact formulation. To represent accurate contact

phenomenon, the following non-penetration condition should be satisfied:

gnλ = 0, gn ≥ 0, λ ≤ 0 , (D.1)

where λ is the Lagrange multiplier and corresponds to the contact pressure based on the

standard Lagrange multiplier method. gn is the gap between contact interfaces on both

master and slave surface. xm is the integration point on the master surface and xs is the

integration point on the slave surface. gn is defined by the material coordinates X and the

displacements U :

λn = σijn
m
i n

m
j = tin

m
i , (D.2)

gn = (xsi − xmi )nm
i = (Xs

i + U s
i −Xm

i − Um
i )nm

i . (D.3)
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(D.1) is identical to the KKT condition. The weak form of the standard Lagrange multiplier

method is as follows: ∫
Γc0

dΓ δg0nλ
0 +

∫
Γc0

dΓ δλ0g0n = 0 . (D.4)

The weak forms are evaluated on the contact interface in the initial configuration, Γc0, based

on the total Lagrangian formulation. Here, the gap and the Lagrange multiplier are denoted

as g0n and λ0 as properties in the initial configuration.

Although contact analysis based on (D.4) can compute the deformation with accurate

contact (accurate displacement field), it is reported that the distribution of contact pressure

tends to become oscillatory [75]. To get the smooth distribution of the contact pressure, the

stabilized Lagrange multiplier method (Wriggers [104], also called as the Uzawa method)

is used in [75]. The weak form of the stabilized Lagrange multiplier method is defined as

follows: ∫
Γc0

dΓ δg0nλ
0 +

∫
Γc0

dΓ δλ0(λ0 − λ̃0 − γcg0n) = 0 , (D.5)

λ̃0 = κmnmTSmnm + κsnsTSsns(js)−1jm , (D.6)

where λ̃0 is the weighted average of the surface traction along the normal direction, and jp is

the Jacobian of surface area computed by the Nanson’s formula. The condition of weights is

κM + κS = 1. γc is the penalty factor to prevent penetration. If both interfaces are separate

each other (g0n > 0), λ0 vanishes and thus, the KKT condition (D.1) is satisfied. If interfaces

penetrate each other, g0n becomes zero to satisfy the KKT condition (D.1).
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Figure D.1: Contact mechanics for Lagrangian XFEM based on [75]

Table D.1: Notation for frictionless contact mechanics
Property Symbol Relation

interface type p m: Master, s: Slave
undeformed configuration Xp

i

undeformed normal np
0i

displacement Up
i

deformation gradient F p F p
ij =

∂xp
i

∂Xp
j
= δij +

∂Up
i

∂Xp
j

current configuration xpi xpi = Xp
i + Up

i

deformed normal np
i

contact interface in deformed configuration Γp
c

normal gap in deformed configuration gn
Lagrange multiplier in deformed configuration λ
Jacobian of surface area jp (D.71)
contact interface in undeformed configuration Γp

c0

normal gap in undeformed configuration g0n g0n = jmgn
Lagrange multiplier in undeformed configuration λ0
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D.2 Numerical Implementation of Frictionless Contact Model (FCM)

This section summarizes the numerical implementation of the frictionless contact model

(FCM). In this case, the tangential friction constant is zero.

D.2.1 Gap Equation

The governing equation of the gap g0n is defined as follows:

Rg = xm + g0nn
m − xs(α) = Xm +Um + g0nn

m − xs(α) = 0 , (D.7)

where α is the local coordinate that determines the integral bounds on the slave interface,

and defined by properties on the master interface. Considering a solution vector of (D.7) as

s = (g0n, α)
T and the Newton iteration, the updated solution vector sn+1 is computed from

the previous solution vector sn. Assuming ∆s is the solution increment of s, the Taylor

expansion of Rg is defined as follows:

Rg(sn+1) = Rg(sn +∆s)

= Rg(sn) +
∂Rg

∂s

∣∣∣∣
s=sn

∆s+O(∆s2) ≃ Rg(sn) +
∂Rg

∂s

∣∣∣∣
s=sn

∆s = 0 . (D.8)

Therefore, the governing equation for the incremental solution vector ∆s = (∆g0n,∆α)
T is:

∂Rg

∂s
∆s = Jg

∆g0n

∆α

 =

nm
x −∂xs

∂α

nm
y −∂ys

∂α


∆g0n

∆α

 = −Rg . (D.9)

g0n is determined by the solution increment computed by Newton’s method.
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D.2.2 Residuals of Contact Formulation

The weak forms for the contact formulation based on the stabilized Lagrange multiplier

method (Uzawa method) are as follows:

rc =

∫
Γm
c0

dΓ δg0nλ
0 = 0 , (D.10)

rλ =

∫
Γm
c0

dΓ δλ0g0n →
∫
Γm
c0

dΓ δλ0(λ0 − λ̃0 − γcg0n) = 0 . (D.11)

In (D.11), the averaged normal traction λ̃0 is introduced and its definition is:

λ̃0 = κmnmT
0 Smnm

0 + κsnsT
0 Ssns

0(j
s)−1jm (∵ κm + κs = 1) , (D.12)

where κm and κs are weights for the weighted average. Using the local coordinate along the

master interface α, (D.10) and (D.11) are represented as follows:

rc =

∫ α2

α1

dα δg0nλ
0

∥∥∥∥∂Xm

∂α

∥∥∥∥ = 0 , (D.13)

rλ =

∫ α2

α1

dα δλ0(λ0 − λ̃0 − γcg0n)
∥∥∥∥∂Xm

∂α

∥∥∥∥ = 0 . (D.14)

In the following discussion, the finite element discretization of this frictionless contact model

is discussed. The variations in rc and rλ can be denoted as follows:

δg0n =
∂g0n
∂U a

t

|Ua
t ⟩ ≡

∂g0n
∂U s

t

|U s
t ⟩+

∂g0n
∂Um

t

|Um
t ⟩ , (D.15)

δλ0 = NT
λ0 , (D.16)

where |·⟩ represents the components of a column vector (based on the notation of quantum

mechanics). In the following discussion, ⟨·| also means the components of a row vector.

Um
t and U s

t are the nodal displacement vector of the master and slave contact interfaces,

including both x and y displacements. U a
t means the union of Um

t and U s
t . Nλ0 is the shape

function vector for the nodal Lagrange multipliers. Using this notation, discretized forms of
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(D.13) and (D.14) by the finite element discretization are denoted by the column vectors:

Rc ≡
∫ α2

α1

dα
∂g0n
∂U a

t

λ0
∥∥∥∥∂Xm

∂α

∥∥∥∥|Ua
t ⟩ , (D.17)

Rλ ≡
∫ α2

α1

dα NT
λ0(λ

0 − λ̃0 − γcg0n)
∥∥∥∥∂Xm

∂α

∥∥∥∥|λ0⟩ . (D.18)

D.2.3 Computation of Lagrange Multiplier

In the reference work [75], (D.18) is computed by condensing (D.18) into the elementwise

evaluation. Then, the Lagrange multiplier that is computed elementwise, is applied into

(D.17) to compute contact. The computation of the nodal Lagrange multiplier λ0 is as

follows:(∫ α2

α1

dα NT
λ0Nλ0

∥∥∥∥∂Xm

∂α

∥∥∥∥|λ0⟩⟨λ0|)λ0 =

∫ α2

α1

dα NT
λ0(λ̃

0 + γcg
0
n)

∥∥∥∥∂Xm

∂α

∥∥∥∥|λ0⟩ , (D.19)

λ0 =

(∫ α2

α1

dα NT
λ0Nλ0

∥∥∥∥∂Xm

∂α

∥∥∥∥)−1 ∫ α2

α1

dα NT
λ0(λ̃

0 + γcg
0
n)

∥∥∥∥∂Xm

∂α

∥∥∥∥|λ0⟩ . (D.20)

The Lagrange multiplier at an arbitrary point α: λ0(α), is computed by the above nodal

Lagrange multiplier λ0 and Nλ0:

λ0(α) = Nλ0(α)λ
0 . (D.21)

The first derivatives of λ0 are needed for the computation of the Jacobian for contact:

∂λ0

∂α1

=

(∫ α2

α1

dα NT
λ0Nλ0

∥∥∥∥∂Xm

∂α

∥∥∥∥)−1[
NT

λ0(λ
0 − λ̃0 − γcg0n)

∥∥∥∥∂Xm

∂α

∥∥∥∥]
α=α1

|λ0⟩ , (D.22)

∂λ0

∂α2

= −
(∫ α2

α1

dα NT
λ0Nλ0

∥∥∥∥∂Xm

∂α

∥∥∥∥)−1[
NT

λ0(λ
0 − λ̃0 − γcg0n)

∥∥∥∥∂Xm

∂α

∥∥∥∥]∣∣∣∣
α=α2

|λ0⟩ , (D.23)

∂λ0

∂U a
t

=

(∫ α2

α1

dα NT
λ0Nλ0

∥∥∥∥∂Xm

∂α

∥∥∥∥)−1 ∫ α2

α1

dα NT
λ0

(
∂λ̃0

∂U a
t

+ γc
∂g0n
∂U a

t

)∥∥∥∥∂Xm

∂α

∥∥∥∥|λ0⟩ , (D.24)
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where (D.22) and (D.23) are the derivatives with respect to the upper bound α2 and the

lower bound α1. (D.24) is the derivative with respect to the displacement. Moreover, the

derivatives of Lagrange multiplier at an arbitrary point α are computed as follows:

∂λ0

∂α1

(α) = Nλ0(α)
∂λ0

∂α1

, (D.25)

∂λ0

∂α2

(α) = Nλ0(α)
∂λ0

∂α2

, (D.26)

∂λ0

∂U a
t

(α) = Nλ0(α)
∂λ0

∂U a
t

. (D.27)

D.2.4 Jacobian of Contact Formulation

Using pre-computed Lagrangian multiplier and its derivatives, the Jacobian correspond-

ing to the contact residual Rc is computed as follows:

dRc

dU a
t

=
∂Rc

∂U a
t

+
∂Rc

∂α1

∂α1

∂U a
t

+
∂Rc

∂α2

∂α2

∂U a
t

≡ Jc−u + Jc−a1
∂α1

∂U a
t

+ Jc−a2
∂α2

∂U a
t

. (D.28)

Jc−u is a contribution of the partial derivative with respect to the displacement. Jc−a1 and

Jc−a2 are contributions of the upper and lower bounds of the contact integration. Detailed

forms of Jc−u, Jc−a1 and Jc−a2 are as follows:

Jc−u =

∫ α2

α1

dα
∂g0n
∂U a

t

Nλ0
∂λ0

∂U a
t

∥∥∥∥∂Xm

∂α

∥∥∥∥|Ua
t ⟩⟨Ua

t |

+

∫ α2

α1

dα
∂2g0n
∂U a

t
2Nλ0λ

0

∥∥∥∥∂Xm

∂α

∥∥∥∥|Ua
t ⟩⟨Ua

t | , (D.29)

Jc1−a1 =

∫ α2

α1

dα
∂g0n
∂U a

t

Nλ0
∂λ0

∂α1

∥∥∥∥∂Xm

∂α

∥∥∥∥|Ua
t ⟩⟨α1|

−
[
∂g0n
∂U a

t

Nλ0λ
0

∥∥∥∥∂Xm

∂α

∥∥∥∥]
α=α1

|Ua
t ⟩⟨α1| , (D.30)

Jc1−a2 =

∫ α2

α1

dα
∂g0n
∂U a

t

Nλ0
∂λ0

∂α2

∥∥∥∥∂Xm

∂α

∥∥∥∥|Ua
t ⟩⟨α2|

+

[
∂g0n
∂U a

t

Nλ0λ
0

∥∥∥∥∂Xm

∂α

∥∥∥∥]
α=α2

|Ua
t ⟩⟨α2| . (D.31)
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D.2.5 Derivatives related to Residual and Jacobian

Necessary derivatives related to the above residuals and Jacobians are summarized in

this section.

• Derivatives of deformed normal:
∂nm

x

∂Um
t

,
∂nm

y

∂Um
t

,
∂2nm

x

∂Um
t

2 ,
∂2nm

y

∂Um
t

2

• Derivatives of gap:
∂g0n
∂U a

t

,
∂2g0n
∂U a

t
2

• Derivatives of bounds of master interface:
∂α1

∂U a
t

,
∂α2

∂U a
t

,

D.2.5.1 First Derivative of Deformed Master Normal

This section describes the first derivatives of the deformed master normal. There are

several ways to compute the deformed normal. In this section, the way starting from the

undeformed tangential vector is summarized. First, the undeformed tangential vector t0,

which corresponds to a vector along the master interface and not normalized, is defined as

follows:

tm0 =

(
tm0x tm0y

)T

. (D.32)

The undeformed normal nm
0 is computed by tm0 :

nm
0 = ∥tm0 ∥−1

(
tm0y −tm0x

)T

, (D.33)

The deformed tangential vector is computed by using the deformation gradient tensor F :

tm = F tm0 . (D.34)
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Similar to (D.33), the deformed normal nm is also computed by the deformed tangential

vector tm:

nm = ∥tm∥−1

(
tmx tmy

)
. (D.35)

To compute the first derivative of nm, the first derivative of the tangential vector tm is used:

∂tm

∂Um
t

T

=

 ∂tmx
∂Um

t

T

∂tmy
∂Um

t

T

 =

 ∂Fxx

∂Um
t

∂Fxy

∂Um
t

∂Fyx

∂Um
t

∂Fyy

∂Um
t


tm0x
tm0y

 =

t0x ∂Nm

∂x
+ t0y

∂Nm

∂y
⟨Um

x |

t0x
∂Nm

∂x
+ t0y

∂Nm

∂y
⟨Um

y |

 , (D.36)

where Nm is the shape function vector on the master interface. Using (D.36), the first

derivative of the deformed normal, ∂nm

∂Um
t
, is computed as follows:

∂nm
x

∂Um
t

= −∥tm∥−3tmx t
m
y

∂tmx
∂Um

t

+ ∥tm∥−3tmx
2 ∂t

m
y

∂Um
t

, (D.37)

∂nm
y

∂Um
t

= −∥tm∥−3tmy
2 ∂t

m
x

∂Um
t

+ ∥tm∥−3tmx t
m
y

∂tmy
∂Um

t

. (D.38)

D.2.5.2 Second Derivative of Deformed Master Normal

The second derivative of the deformed master normal is also necessary to compute the

Jacobian for contact. The second derivative of the deformed master normal is also computed

by the tangential vector tm as follows:

∂2nm
x

∂Um
t

2 = ∥tm∥−5

[
tmy (2t

m
x

2 − tmy
2)
∂tmx
∂Um

t

∂tmx
∂Um

t

T

− tmx (tmx
2 − 2tmy

2)
∂tmx
∂Um

t

∂tmy
∂Um

t

T

− tmx (tmx 2 − 2tmy
2)
∂tmy
∂Um

t

∂tmx
∂Um

t

T

− 3tmx
2tmy

∂tmy
∂Um

t

∂tmy
∂Um

t

T]
, (D.39)

∂2nm
y

∂Um
t

2 = ∥tm∥−5

[
3tmx t

m
y

2 ∂t
m
x

∂Um
t

∂tmx
∂Um

t

T

− tmy (2tmx
2 − tmy

2)
∂tmx
∂Um

t

∂tmy
∂Um

t

T

− tmy (2tmx
2 − tmy

2)
∂tmy
∂Um

t

∂tmx
∂Um

t

T

+ tmx (t
m
x

2 − 2tmy
2)
∂tmy
∂Um

t

∂tmy
∂Um

t

T]
. (D.40)
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D.2.5.3 First Derivative of Gap

The first derivative of the gap g0n with respect to the displacement is computed from the

gap equation:

Rg = xm + g0nn
m − xs(α) = Xm +Um + g0nn

m −Xs(α)−U s(α) = 0 . (D.41)

Taking derivatives with respect to master and slave displacements: Um
t and U s

t , then:

∂Rg

∂Um
t

=

Nm⟨Um
x |

Nm⟨Um
y |

+

nm
x

nm
y

 ∂g0n
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t

T

⟨Um
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t

T
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t

T
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t | −
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∂Um
t

T

⟨Um
t |

≡

nm
x
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y

 ∂g0n
∂Um

t

T

⟨Um
t | −

∂xs

∂α

∂α

∂Um
t

T

⟨Um
t |+

Cm
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T

Cm
gy

T

 = 0 , (D.42)

∂Rg
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t
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T
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∂α
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∂Um
t

T

⟨U s
t |+

Cs
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T

Cs
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T

 = 0 . (D.43)

(D.42) and (D.43) are summarized as the following matrix form:

Jg

 ∂gn
∂Up

t

∂α
∂Up

t

 = −

Cp
gx

Cp
gy

 (∵ p = {m, s}) , (D.44)

where Jg is the Jacobian for (D.41) and Cp
gi are defined as follows:

Jg =

nm
x −∂xs

∂α

nm
y −∂ys

∂α

 , (D.45)

Cm
gx =NT

m|Um
x ⟩+ g0n

∂nm
x

∂Um
t

|Um
t ⟩ , (D.46)

Cm
gy =N

T
m|Um

y ⟩+ g0n
∂nm

y

∂Um
t

|Um
t ⟩ , (D.47)
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Cs
gx =−NT

s |U s
x⟩ , (D.48)

Cs
gx =−NT

s |U s
y ⟩ , (D.49)

where Nm and Ns are the shape function vectors for the master and slave interfaces, re-

spectively. The following augmented first derivative of the gap ∂gn
∂Ua

t
, which includes the

derivatives of both the master and slave displacements, is used for the Jacobian:

∂g0n
∂U a

t

=

 ∂g0n
∂Us

t

∂g0n
∂Um

t

 . (D.50)

D.2.5.4 Second Derivative of Gap

The second derivative of the gap g0n is computed from (D.41). The first derivatives of

(D.41) with respect to master and slave displacements: Um
t and U s

t , are summarized as

follows:

∂Rg
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The second derivatives of (D.41) is computed by taking the derivative of (D.51) and (D.52)

with respect to Um
t and U s

t as follows:

∂2Rgx

∂Um
t

2 =

(
∂2g0n
∂Um

t
2n

m
x +

∂g0n
∂Um

t

∂nm
x

∂Um
t

T

+
∂nm

x

∂Um
t

∂g0n
∂Um

t

T

+
∂2nm

x

∂Um
t

2 g
0
n

)
|Um

t ⟩⟨Um
t |

−
(
∂xs

∂α

∂2α

∂Um
t

2 +
∂2xs

∂α2

∂α

∂Um
t

∂α

∂Um
t

T)
|Um

t ⟩⟨Um
t |

≡nm
x

∂2g0n
∂Um

t
2 |U

m
t ⟩⟨Um

t | −
∂xs

∂α

∂2α

∂Um
t

2 |U
m
t ⟩⟨Um

t |+Dmm
gx , (D.53)
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Finally, the second derivatives of the gap g0n are computed by (D.52) - (D.60), using the

identical Jacobian Jg (D.45) for the first derivatives of the gap as follows:
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In (D.61), Dpq
gi are defined as follows:
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The augmented second derivative of the gap, which includes derivatives of the master and

slave displacements, is summarized as follows:
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D.2.5.5 First Derivative of Upper and Lower Bounds in Local Coordinate

The computation for the first derivatives of the local coordinates on the integral bounds;

α1 and α2, is identical to the computation of the first derivative of the gap:

Jg|α=αi
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∂Up
t
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∂Up
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 = −
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∣∣∣∣
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(∵ p = {m, s}, i = {1, 2}) , (D.69)

where Jg|α=αi
represents a Jacobian on an integral bound. The definition of Jg, C

p
gx and Cp

gy

is summarized at (D.45) - (D.49). The augmented first derivative of αi is defined as follows:
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 . (D.70)
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D.3 Jacobian of Surface Area (Nanson’s Formula)

The definition of the Jacobian of the surface area is denoted as follows:

jp = Jp∥(F p)−Tn0∥ = det(F p)∥(F p)−Tn0∥ . (D.71)

The brief derivation of (D.71) is summarized in the following discussion. First, consider the

traction boundary integral of phase p (p = {m, s}) in the deformed configuration (on Γ) and

the initial configuration (on Γ0):∫
Γ

dΓ δvpi σ
p
ijn

p
j =

∫
Γ0

dΓ δV p
i P

p
iJn

p
0J =

∫
Γ0

dΓ δV p
i J

pσp
ikF

p
Jk

−1np
0J , (D.72)

where np = {np
i } and np

0 = {np
0I} are the deformed normal and the undeformed normal

of phase p, respectively. The last term of (D.72) uses the relation between the first Piola-

Kirchhoff stress P p and the Cauchy stress σp via the deformation gradient F p. By removing

the integral symbol and extracting infinitesimal small region (∆Γ and ∆Γ0) along this inte-

gral, the deformed normal is denoted as follows:

np∆Γp = Jp(F p)−Tnp
0∆Γp

0 ⇒ np = Jp(F p)−Tnp
0

∆Γp
0

∆Γp
. (D.73)

Finally, (D.71) is derived by taking the norm of np:

∥np∥ = Jp∥(F p)−Tnp
0∥
∆Γp

0

∆Γp
= 1 ⇒ ∆Γp = Jp∥(F p)−Tnp

0∥∆Γp
0 ≡ jp∆Γp

0 , (D.74)

∴ jp = Jp∥(F p)−Tn0∥ = det(F p)∥(F p)−Tn0∥ . (D.75)
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Appendix E

Correction Term due to Discontinuous Galerkin Method in Time

This appendix is a brief summary of the correction term due to the discontinuous Galerkin

method in time, which is used in the space-time XFEM. Assuming a following equation which

has a first derivative in terms of time as a strong form:

α(u)
∂u

∂t
− f(u) = 0 . (E.1)

Mathematically, a time integration should be performed by the continuous time integration

methods such as the continuous Galerkin method. In the following discussion, space-time

slabs for both the continuous and discontinuous Galerkin methods are denoted as follows:

Slab (continuous Galerkin): Q̄n = Ω⊕ [T n
−, T

n+1
− ], (E.2)

Slab (discontinuous Galerkin): Qn = Ω⊕]T n
−, T

n+1
− ] = Ω⊕ [T n

+, T
n+1
− ] ∈ Q̄n. (E.3)

The weak form R that corresponds to (E.1) should be defined in Q̄n as follows:

R =

∫
Q̄n

dQ w

(
α(u)

∂u

∂t
− f(u)

)
, (E.4)

where w is an admissible test function. The weak form for discontinuous Galerkin method

is a modification of (E.4). First, (E.4) is split into two parts (Qn and the rest):

R ≃
∫
Qn

dQ w

(
α(u)

∂u

∂t
− f(u)

)
+

∫ tn+

tn−

dt

∫
Pn
+

dΩ

(
α(u)

∂u

∂t
− f(u)

)
. (E.5)

The first term of RHS is an integral within a space-time slab for the discontinuous Galerkin

method: Qn. The last term is the correction term due to the discontinuous Galerkin method
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in time. The last term of (E.5) is an integral in a thin slice with a temporal width δt:

δt ≡ tn+ − tn− ≪ 1 . (E.6)

Then, the last term of (E.5) is modified as follows:∫ tn+

tn−

dt

∫
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+

dΩ w
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dΩ w|n+[[α(u)u]]n± , (E.7)

where ·|n+ and ·|n− denote values at tn+ and tn−, respectively. The blue terms at the above

equation vanish because δt ≪ 1. Therefore, the weak form for the discontinuous Galerkin

method is summarized as follows:

R =

∫
Qn

dQ w

(
α(u)

∂u

∂t
− f(u)

)
+

∫
Pn
+

dΩ w|n+[[α(u)u]]n± , (E.8)

where the red term is the correction term due to the discontinuous Galerkin method in time.

By using the above weak form, the continuity between the current and past space-time slabs

is guaranteed using the discontinuous Galerkin method in time.
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Appendix F

Comparison between Simplex Triangulation Approach and

Elementwise Temporal Layer Approach

The elementwise temporal layer approach is used in the proposed space-time XFEM

(Chapter 3). The advantage of the elementwise temporal layer approach is the easy imple-

mentation in terms of the setting of volume integration points. The conventional settings of

spatial volume integration points used in the standard XFEM can be directly applicable for

the space-time XFEM. On the other hand, Lehrenfeld [47] proposed the space-time XFEM

using the simplex triangulation approach. The simplex triangulation approach is a method

that uses the direct decomposition of a space-time slab. A space-time slab is decomposed by

simplices, considering space-time intersection configuration. The simplex triangulation ap-

proach is sophisticated but more complex implementation is essential than the elementwise

temporal layer approach.

Figure F.1: Comparison of settings of space-time volume integration points (1)
(non-intersected space-time element)

This appendix is the comparison between the simplex triangulation approach and the
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elementwise temporal layer approach. This appendix assumes spatially two-dimensional

cases. Figure F.1 is the comparison of the settings of the space-time volume integration points

in a standard (non-intersected) space-time element. (ξ, η, τ) are isoparametric coordinates of

(x, y, t), respectively. In the simplex triangulation approach (left figure), an entire space-time

element is firstly decomposed by three-dimensional Delaunay triangulation. Then, space-

time volume integration points are defined within three-dimensional simplices (tetrahedrons)

based on the quadrature rule. Four integration points are defined in each simplex and thus,

there are 24 integration points at the left figure. The right figure is the setting of space-time

volume integration points based on the elementwise temporal layer approach. The space-

time volume integration points distribute on each temporal slice using the conventional

settings of spatial volume integration points in the standard XFEM. Three temporal slices

are defined in each temporal layer and nine integration points in each temporal slice. Thus,

27 integration points for the space-time volume are defined at the right figure. As three-

dimensional Delaunay triangulation is not necessary, this implementation is much easier than

the simplex triangulation approach.

Figure F.2: Comparison of settings of space-time volume integration points (2)
(intersected space-time element, phase 1)
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Figure F.3: Comparison of settings of space-time volume integration points (3)
(intersected space-time element, phase 2)

Figures F.2 and F.3 are comparisons of the settings of space-time volume integration

points in a intersected space-time element. Assuming a two-phase case, Figure F.2 is about

phase 1 (negative phase) and Figure F.3 is about phase 2 (positive phase), respectively. The

green face shows a space-time interface. The simplex triangulation approach (left figures)

is based on three-dimensional Delaunay triangulation. Black solid lines denote edges of

three-dimensional simplices. In the elementwise temporal layer approach (right figures),

each temporal layer is corresponding to different spatial configurations. At these figures, two

temporal layers are defined and six temporal slices are determined (three slices in each layer).

Each slice represents the spatial configuration at different time. Black solid lines denote edges

of elementwise temporal slices. The elementwise temporal layer approach is based on the

conventional setting of the standard XFEM. First, the spatial intersection configuration is

created on each temporal slice. Then, two-dimensional Delaunay triangulation is performed

on each slice. The space-time volume integration points on each temporal slice are distributed

on each triangle created by Delaunay triangulation. Therefore, the number of integration

points based on the elementwise temporal layer approach is generally larger than one based

on the simplex triangulation approach.
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Table F.1 is the summary of numbers of space-time volume integration points in Figures

F.1, F.2 and F.3 to compare two methods. As mentioned above, the elementwise temporal

layer approach has more integration points than the simplex triangulation approach at the

case of space-time intersected elements in general. However, the dominant part of space-time

elements in the space-time XFEM is standard (non-intersected) elements like Figure F.1. As

the numbers of space-time volume integration points using both approach are almost identical

in the case of non-intersected space-time elements, the difference in computational cost is

small between two approaches. Moreover, the elementwise temporal layer approach does not

need the direct decomposition of a space-time slab. In particular, the simplex triangulation

for spatially three-dimensional cases using four-dimensional simplices is complex because

Delaunay triangulation is not applicable in the four-dimensional space. The elementwise

temporal layer approach has the beauty to reduce computational costs because the higher-

dimensional simplex triangulation is not needed. In addition, individual temporal slices

are independent from other slices. As the communication between different slices is not

necessary, the elementwise temporal layer approach has a high affinity for the efficient parallel

computations.

Table F.1: Number of integration points in each figure
Element-Type Figure Simplex Triangulation Temporal Layer

Non-intersected Figure F.1 24 27
Intersected Figure F.2 40 90
Intersected Figure F.3 4 21

The rest of this appendix demonstrates the comparisons between the simplex triangula-

tion approach and the elementwise temporal layer approach using two numerical examples

discussed at preceding chapters. Figure F.4 is a comparison of the DFG 2D-3 benchmark

problem using the space-time XFEM based on both approaches. This numerical example
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is summarized in Section 3.6.2. This figure shows the histories of quantities of interest; the

drag coefficient CD, the lift coefficient CL, and the pressure drop around a fixed cylinder ∆p.

The results are computed by a model with the temporal discretization ∆t = 0.2s and the

spatial discretization h/D = 0.1105 (see Tables 3.4 and 3.7).

Figure F.4: Comparison of DFG 2D-3 benchmark problem using space-time XFEM
(blue: simplex triangulation approach, red: elementwise temporal layer approach)

(Details of this problem are summarized in Section 3.6.2.)

Table F.2: Comparison of Cmax
D , Cmax

L and ∆pfin

Approach Cmax
D Cmax

L ∆pfin t(Cmax
D ) t(Cmax

L )
(-) (-) (kPa) (s) (s)

Simplex triangulation 3.0876 0.4812 -0.1049 3.9600 5.9000
Elementwise temporal layer 3.0877 0.4809 -0.1050 3.9400 5.9000

(∆t = 0.2s, h/D = 0.1105, 11718 DOFs, 400 time steps)

In this example, this problem is a fixed interface problem; the unsteady flow around a
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fixed cylinder. As can be seen, the histories of these quantities using both approaches are

identical. Table F.2 is a comparison of representative quantities (maximum CD, maximum

CL and final ∆p at t = 8s). Although these representative measures are very sensitive

quantities because they are defined by values at one time; i.e. non-integrated quantities,

both approaches reproduced almost identical solutions. Thereby, the equivalence between

the simplex triangulation approach and the elementwise temporal layer approach was verified.

Following examples are computation using moving interfaces. Figure F.5 is a comparison

using a FSI problem based on the Lagrangian-immersed FSI method with the space-time

XFEM. There is a falling elastic cylinder due to a body force in y direction, within the

incompressible Navier-Stokes (INS) fluid. This numerical example is summarized in Section

7.4.1. Figure F.5 shows the histories of the fluid force acting on a cylinder.

Figure F.5: Comparison of a falling elastic cylinder in INS fluid
(method: Lagrangian-immersed FSI method using space-time XFEM)

(blue: simplex triangulation approach, red: elementwise temporal layer approach)
(Details of this problem are summarized in Section 7.4.1.)

The overall tendency of two approaches in this figure is almost identical. As spikes exist

in both cases, the setting of the space-time volume integration points does not cause these

spikes in the Lagrangian-immersed FSI method. This indicates that other factors such as
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FSI between non-matching interfaces, the coupling method (Nitsche’s method or Lagrange

multiplier method), and stabilization method, might cause these spikes.

The last example is the Turek-Hron FSI3 benchmark problem. This numerical example

is studied by the Lagrangian-immersed FSI method using the space-time XFEM. Details are

summarized in Section 7.4.2. Figures F.6 and F.7 are the histories of quantities of interest;

the tip displacements U tip
x and U tip

y , the drag force FD and the lift force FL. This figure

shows results in the completely developed stage (7.6s ≤ t ≤ 8.1s).

In these figures, the black dots represent the reference solution [111]. The blue solid line

and red dashed line denote the results using ∆t = 0.0025s based on the simplex triangulation

approach and the elementwise temporal layer approach, respectively. As can be seen, both

the simplex triangulation approach and the elementwise temporal layer approach computed

almost identical solution. The summary of the mean, the amplitude and the frequency of

representative quantities is listed in Table F.3. While there is small difference between two

approaches, both approaches compute almost identical results.

Table F.3: Comparison using Turek-Hron FSI3
(mean ± amplitude [frequency(Hz)])

U tip
x (mm) U tip

y (mm) FD (N) FL (N)

[111] −2.69± 2.53 [10.9] 1.48± 34.38 [5.3] 457.3± 22.66 [10.9] 2.22± 149.78 [5.3]
ST −2.63± 2.45 [11.1] 1.17± 33.69 [5.6] 463.4± 18.85 [11.1] 9.84± 180.50 [5.6]
TL −2.63± 2.44 [11.1] 1.11± 33.59 [5.6] 461.8± 20.00 [11.1] 9.79± 181.01 [5.6]

([111]: ALE-FSI, ST: Simplex Triangulation, TL: Elementwise Temporal Layer)

The equivalence of the simplex triangulation approach and the elementwise temporal

layer approach in the space-time XFEM is verified using both fixed and moving interface

problems. It should be noted that spikes in drag and lift forces (Figure F.7) are caused by

other factors mentioned at the previous example (Figure F.5).
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Figure F.6: Comparison of tip displacements (Turek-Hron FSI3 Problem)

Figure F.7: Comparison of drag and lift forces (Turek-Hron FSI3 Problem)
(method: Lagrangian-immersed FSI method using space-time XFEM)

(Details of this problem are summarized in Section 7.4.1.)
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